scispace - formally typeset
Open AccessJournal Article

Oncomirs : microRNAs with a role in cancer

TLDR
I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract
I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Regulation of MicroRNA Biogenesis: A miRiad of mechanisms.

TL;DR: The regulation of microRNA biogenesis and activity is reviewed, with particular focus on mechanisms of post-transcriptional control.

Tumor-Initiating Cell Growth and Self-Renewal via Tumor Protein 53-Induced Nuclear Protein 1

TL;DR: Functional studies on miR-130b lentiviral-transduced CD133⁻ cells demonstrated superior resistance to chemotherapeutic agents, enhanced tumorigenicity in vivo, and a greater potential for self renewal.
Journal ArticleDOI

miRNA-96 Suppresses KRAS and Functions as a Tumor Suppressor Gene in Pancreatic Cancer

TL;DR: It is reported that miR-96 directly targets the KRAS oncogene and functions as a tumor-suppressing miRNA in pancreatic cancer cells and is identified as a potent regulator of KRAS.
Journal ArticleDOI

Prognostic Values of microRNAs in Colorectal Cancer

TL;DR: Hsa-miR-200c may be a potential novel prognostic factor in colorectal cancer patients because of its strongly associated with the mutation status of the p53 tumor suppressor gene.
References
More filters
Journal ArticleDOI

MicroRNAs: Genomics, Biogenesis, Mechanism, and Function

TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
Journal ArticleDOI

The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14

TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.
Journal ArticleDOI

MicroRNA expression profiles classify human cancers

TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Journal ArticleDOI

Prediction of Mammalian MicroRNA Targets

TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
Journal ArticleDOI

The nuclear RNase III Drosha initiates microRNA processing

TL;DR: The two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.
Related Papers (5)