scispace - formally typeset
Search or ask a question
Institution

Alcatel-Lucent

Stuttgart, Germany
About: Alcatel-Lucent is a based out in Stuttgart, Germany. It is known for research contribution in the topics: Signal & Network packet. The organization has 37003 authors who have published 53332 publications receiving 1430547 citations. The organization is also known as: Alcatel-Lucent S.A. & Alcatel.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a diffuse-interface method is proposed for the simulation of interfaces between compressible fluids with general equations of state, including tabulated laws, and the interface is allowed to diffuse on a small number of computational cells.

467 citations

Journal ArticleDOI
TL;DR: This paper applies random matrix theory to obtain analytical characterizations of the capacity of correlated multiantenna channels that uncover compact capacity expansions that are valid for arbitrary numbers of antennas and that shed insight on how antenna correlation impacts the tradeoffs among power, bandwidth, and rate.
Abstract: This paper applies random matrix theory to obtain analytical characterizations of the capacity of correlated multiantenna channels. The analysis is not restricted to the popular separable correlation model, but rather it embraces a more general representation that subsumes most of the channel models that have been treated in the literature. For arbitrary signal-to-noise ratios (SNR), the characterization is conducted in the regime of large numbers of antennas. For the low- and high-SNR regions, in turn, we uncover compact capacity expansions that are valid for arbitrary numbers of antennas and that shed insight on how antenna correlation impacts the tradeoffs among power, bandwidth, and rate.

467 citations

Proceedings ArticleDOI
Jacob Benesty1
13 May 2002
TL;DR: In this article, the authors proposed a new rule that is more reliable than the one used in PNLMS, and many simulations show that the new algorithm performs better than NLMS, regardless of the nature of the impulse response.
Abstract: Recently, the proportionate normalized least mean square (PNLMS) algorithm was developed for use in network echo cancelers. In comparison to the normalized least mean square (NLMS) algorithm, PNLMS has very fast initial convergence and tracking when the echo path is sparse. Unfortunately, when the impulse response is dispersive, the PNLMS converges much slower than NLMS. This implies that the rule proposed in PNLMS is far from optimal. In many simulations, it seems that we fully benefit from PNLMS only when the impulse response is close to a delta function. In this paper, we propose a new rule that is more reliable than the one used in PNLMS. Many simulations show that the new algorithm (improved PNLMS) performs better than NLMS and PNLMS, whatever the nature of the impulse response is.

466 citations

Journal ArticleDOI
08 Sep 2000-Science
TL;DR: The data show direct evidence of one-dimensional quantized phonon subbands above 4 kelvin, in excellent agreement with model calculations of individual nanotubes and differ markedly from the specific heat of two-dimensional graphene or three-dimensional graphite.
Abstract: The electronic spectra of carbon nanotubes and other nanoscale systems are quantized because of their small radii. Similar quantization in the phonon spectra has been difficult to observe because of the far smaller energy scale. We probed this regime by measuring the temperature-dependent specific heat of purified single-wall nanotubes. The data show direct evidence of one-dimensional quantized phonon subbands. Above 4 kelvin, they are in excellent agreement with model calculations of individual nanotubes and differ markedly from the specific heat of two-dimensional graphene or three-dimensional graphite. Detailed modeling yields an energy of 4.3 millielectron volts for the lowest quantized phonon subband and a tube-tube (or “lattice”) Debye energy of 1.1 millielectron volts, implying a small intertube coupling in bundles.

465 citations

Patent
09 Dec 1998
TL;DR: In this paper, a gesture-based three-dimensional computer interface system that uses images of hand gestures to control a computer and that tracks motion of the user's hand or a portion thereof in a 3D coordinate system with ten degrees of freedom is presented.
Abstract: A video gesture-based three-dimensional computer interface system that uses images of hand gestures to control a computer and that tracks motion of the user's hand or a portion thereof in a three-dimensional coordinate system with ten degrees of freedom. The system includes a computer with image processing capabilities and at least two cameras connected to the computer. During operation of the system, hand images from the cameras are continually converted to a digital format and input to the computer for processing. The results of the processing and attempted recognition of each image are then sent to an application or the like executed by the computer for performing various functions or operations. When the computer recognizes a hand gesture as a "point" gesture with one or two extended fingers, the computer uses information derived from the images to track three-dimensional coordinates of each extended finger of the user's hand with five degrees of freedom. The computer utilizes two-dimensional images obtained by each camera to derive three-dimensional position (in an x, y, z coordinate system) and orientation (azimuth and elevation angles) coordinates of each extended finger.

464 citations


Authors

Showing all 37011 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yoshua Bengio2021033420313
John A. Rogers1771341127390
Zhenan Bao169865106571
Thomas S. Huang1461299101564
Federico Capasso134118976957
Robert S. Brown130124365822
Christos Faloutsos12778977746
Robert J. Cava125104271819
Ramamoorthy Ramesh12264967418
Yann LeCun121369171211
Kamil Ugurbil12053659053
Don Towsley11988356671
Steven P. DenBaars118136660343
Robert E. Tarjan11440067305
Network Information
Related Institutions (5)
Bell Labs
59.8K papers, 3.1M citations

96% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

88% related

Samsung
163.6K papers, 2M citations

87% related

Chalmers University of Technology
53.9K papers, 1.5M citations

87% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202212
202130
202050
201983
2018215