scispace - formally typeset
Search or ask a question
Institution

Alcatel-Lucent

Stuttgart, Germany
About: Alcatel-Lucent is a based out in Stuttgart, Germany. It is known for research contribution in the topics: Signal & Network packet. The organization has 37003 authors who have published 53332 publications receiving 1430547 citations. The organization is also known as: Alcatel-Lucent S.A. & Alcatel.


Papers
More filters
Journal ArticleDOI
TL;DR: A large population of mobile stations that are interconnected by a multihop wireless network is considered, with the need to support multimedia communications, with low latency requirements for interactive traffic and quality-of-service (QoS) support for real-time streams (voice/video).
Abstract: We consider a large population of mobile stations that are interconnected by a multihop wireless network. The applications of this wireless infrastructure range from ad hoc networking (e.g., collaborative, distributed computing) to disaster recovery (e.g., fire, flood, earthquake), law enforcement (e.g., crowd control, search-and-rescue), and military (automated battlefield). Key characteristics of this system are the large number of users, their mobility, and the need to operate without the support of a fixed (wired or wireless) infrastructure. The last feature sets this system apart from existing cellular systems and in fact makes its design much more challenging. In this environment, we investigate routing strategies that scale well to large populations and can handle mobility. In addition, we address the need to support multimedia communications, with low latency requirements for interactive traffic and quality-of-service (QoS) support for real-time streams (voice/video). In the wireless routing area, several schemes have already been proposed and implemented (e.g., hierarchical routing, on-demand routing, etc.). We introduce two new schemes-fisheye state routing (FSR) and hierarchical state routing (HSR)-which offer some competitive advantages over the existing schemes. We compare the performance of existing and proposed schemes via simulation.

768 citations

Journal ArticleDOI
James C. Phillips1
TL;DR: In this paper, the authors show that the appearance of the stretched exponential is often described in the context of dispersive transport, where is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to even at, a glass transition temperature.
Abstract: Stretched exponential relaxation, , fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to even at , a glass transition temperature. We show that for molecular relaxation can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, for short-range forces, and for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz - Kac - Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips - Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S( Q,t) directly, and the traditional linear response measurements which span the range from to s, as collected and analysed phenomenologically by Angell, Ngai, Bohmer and others. The electronic materials discussed include a-Si:H, granular , semiconductor nanocrystallites, charge density waves in , spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van der Waals supercooled liquids and glasses, orientational glasses, water, fused salts, and heme proteins. In the intrinsic cases the theory of is often accurate to 2%, which is often better than the quoted experimental accuracies . The extrinsic cases are identified by explicit structural signatures which are discussed at length. The discussion also includes recent molecular dynamical simulations for metallic glasses, spin glasses, quasicrystals and polymers which have achieved the intermediate relaxed Kohlrausch state and which have obtained values of in excellent agreement with the prediction of the microscopic theory.

765 citations

Patent
08 Sep 1999
TL;DR: In this article, a unified messaging solution and services platform is provided by utilizing the features and capabilities associated with instant messaging to locate a registered user, query the user for a proposed message disposition, and coordinate services among a plurality of communication devices, modes, and channels.
Abstract: A unified messaging solution and services platform is provided by utilizing the features and capabilities associated with instant messaging to locate a registered user, query the user for a proposed message disposition, and coordinate services among a plurality of communication devices, modes, and channels. A user proxy is registered to the user as a personal communication services platform. The user is able to define various rules for responding to received data and communications, the rules stored within a rules database servicing the communication services platform. Instant messaging is used for communications between the user and the communication services platform's user proxy.

765 citations

Proceedings ArticleDOI
08 Nov 1998
TL;DR: A generalized reduction which is called sub-exponential reduction family (SERF) that preserves sub- Exponential complexity for NP-search problems and shows that Circuit-SAT is SERF-complete for all NP- search problems, and that for any fixed k, k-S AT,k-Colorability, k -Set Cover Independent Set, Clique, Vertex Cover are SERF -complete for the class SNP of search problems expressible by second order existential formulas whose first order
Abstract: For several NP-complete problems, there have been a progression of better but still exponential algorithms. In this paper we address the relative likelihood of sub-exponential algorithms for these problems. We introduce a generalized reduction which we call sub-exponential reduction family (SERF) that preserves sub-exponential complexity. We show that Circuit-SAT is SERF-complete for all NP-search problems, and that for any fixed k, k-SAT, k-Colorability, k-Set Cover Independent Set, Clique, Vertex Cover are SERF-complete for the class SNP of search problems expressible by second order existential formulas whose first order part is universal. In particular, sub-exponential complexity for any one of the above problems implies the same for all others. We also look at the issue of proving strongly exponential lower bounds (that is, bounds of the form 2/sup /spl Omega/(n)/) for AC/sup 0/. This problem is even open far depth-3 circuits. In fact, such a bound for depth-3 circuits with even limited (at most n/sup /spl epsiv//) fan-infer bottom-level gates would imply a nonlinear size lower bound for logarithmic depth circuits. We show that with high probability even degree 2 random GF(2) polynomials require strongly exponential site for /spl Sigma//sub 3//sup k/ circuits for k=o(loglogn). We thus exhibit a much smaller space of 2(0(/sup n2/)) functions such that almost every function in this class requires strongly exponential size /spl Sigma//sub 3//sup k/ circuits. As a corollary, we derive a pseudorandom generator (requiring O(n/sup 2/) bits of advice) that maps n bits into a larger number of bits so that computing parity on the range is hard for /spl Sigma//sub 3//sup k/ circuits. Our main technical lemma is an algorithm that, for any fixed /spl epsiv/>0, represents an arbitrary k-CNF formula as a disjunction of 2/sup /spl epsiv/n/ k-CNF formulas that are sparse, e.g., each having O(n) clauses.

764 citations

Journal ArticleDOI
TL;DR: This paper proposes a systematic method for creating constellations of unitary space-time signals for multiple-antenna communication links and systematically produces the remaining signals by successively rotating this signal in a high-dimensional complex space.
Abstract: We propose a systematic method for creating constellations of unitary space-time signals for multiple-antenna communication links. Unitary space-time signals, which are orthonormal in time across the antennas, have been shown to be well-tailored to a Rayleigh fading channel where neither the transmitter nor the receiver knows the fading coefficients. The signals can achieve low probability of error by exploiting multiple-antenna diversity. Because the fading coefficients are not known, the criterion for creating and evaluating the constellation is nonstandard and differs markedly from the familiar maximum-Euclidean-distance norm. Our construction begins with the first signal in the constellation-an oblong complex-valued matrix whose columns are orthonormal-and systematically produces the remaining signals by successively rotating this signal in a high-dimensional complex space. This construction easily produces large constellations of high-dimensional signals. We demonstrate its efficacy through examples involving one, two, and three transmitter antennas.

761 citations


Authors

Showing all 37011 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Yoshua Bengio2021033420313
John A. Rogers1771341127390
Zhenan Bao169865106571
Thomas S. Huang1461299101564
Federico Capasso134118976957
Robert S. Brown130124365822
Christos Faloutsos12778977746
Robert J. Cava125104271819
Ramamoorthy Ramesh12264967418
Yann LeCun121369171211
Kamil Ugurbil12053659053
Don Towsley11988356671
Steven P. DenBaars118136660343
Robert E. Tarjan11440067305
Network Information
Related Institutions (5)
Bell Labs
59.8K papers, 3.1M citations

96% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

88% related

Samsung
163.6K papers, 2M citations

87% related

Chalmers University of Technology
53.9K papers, 1.5M citations

87% related

Georgia Institute of Technology
119K papers, 4.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202212
202130
202050
201983
2018215