scispace - formally typeset
Search or ask a question

Showing papers by "Temple University published in 2017"


Journal ArticleDOI
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software

3,638 citations


Journal ArticleDOI
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

2,818 citations


Journal ArticleDOI
TL;DR: The assessment of chronic obstructive pulmonary disease has been refined to separate the spirometric assessment from symptom evaluation, and the concept of deescalation of therapy is introduced in the treatment assessment scheme.
Abstract: This Executive Summary of the Global Strategy for the Diagnosis, Management, and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017 report focuses primarily on the revised and novel parts of the document. The most significant changes include: (1) the assessment of chronic obstructive pulmonary disease has been refined to separate the spirometric assessment from symptom evaluation. ABCD groups are now proposed to be derived exclusively from patient symptoms and their history of exacerbations; (2) for each of the groups A to D, escalation strategies for pharmacologic treatments are proposed; (3) the concept of deescalation of therapy is introduced in the treatment assessment scheme; (4) nonpharmacologic therapies are comprehensively presented; and (5) the importance of comorbid conditions in managing chronic obstructive pulmonary disease is reviewed.

2,547 citations


Journal ArticleDOI
TL;DR: A major expansion of the TimeTree resource is reported, which more than triples the number of species and more thanTriple thenumber of studies assembled, which will lead to broader and better understanding of the interplay of the change in the biosphere with the diversity of species on Earth.
Abstract: Evolutionary information on species divergence times is fundamental to studies of biodiversity, development, and disease. Molecular dating has enhanced our understanding of the temporal patterns of species divergences over the last five decades, and the number of studies is increasing quickly due to an exponential growth in the available collection of molecular sequences from diverse species and large number of genes. Our TimeTree resource is a public knowledge-base with the primary focus to make available all species divergence times derived using molecular sequence data to scientists, educators, and the general public in a consistent and accessible format. Here, we report a major expansion of the TimeTree resource, which more than triples the number of species (>97,000) and more than triples the number of studies assembled (>3,000). Furthermore, scientists can access not only the divergence time between two species or higher taxa, but also a timetree of a group of species and a timeline that traces a species' evolution through time. The new timetree and timeline visualizations are integrated with display of events on earth and environmental history over geological time, which will lead to broader and better understanding of the interplay of the change in the biosphere with the diversity of species on Earth. The next generation TimeTree resource is publicly available online at http://www.timetree.org.

1,880 citations


Journal ArticleDOI
TL;DR: Experiments on a number of challenging low-light images are present to reveal the efficacy of the proposed LIME and show its superiority over several state-of-the-arts in terms of enhancement quality and efficiency.
Abstract: When one captures images in low-light conditions, the images often suffer from low visibility. Besides degrading the visual aesthetics of images, this poor quality may also significantly degenerate the performance of many computer vision and multimedia algorithms that are primarily designed for high-quality inputs. In this paper, we propose a simple yet effective low-light image enhancement (LIME) method. More concretely, the illumination of each pixel is first estimated individually by finding the maximum value in R, G, and B channels. Furthermore, we refine the initial illumination map by imposing a structure prior on it, as the final illumination map. Having the well-constructed illumination map, the enhancement can be achieved accordingly. Experiments on a number of challenging low-light images are present to reveal the efficacy of our LIME and show its superiority over several state-of-the-arts in terms of enhancement quality and efficiency.

1,364 citations


Journal ArticleDOI
TL;DR: The proposed MeDShare system is blockchain-based and provides data provenance, auditing, and control for shared medical data in cloud repositories among big data entities and employs smart contracts and an access control mechanism to effectively track the behavior of the data.
Abstract: The dissemination of patients’ medical records results in diverse risks to patients’ privacy as malicious activities on these records cause severe damage to the reputation, finances, and so on of all parties related directly or indirectly to the data. Current methods to effectively manage and protect medical records have been proved to be insufficient. In this paper, we propose MeDShare, a system that addresses the issue of medical data sharing among medical big data custodians in a trust-less environment. The system is blockchain-based and provides data provenance, auditing, and control for shared medical data in cloud repositories among big data entities. MeDShare monitors entities that access data for malicious use from a data custodian system. In MeDShare, data transitions and sharing from one entity to the other, along with all actions performed on the MeDShare system, are recorded in a tamper-proof manner. The design employs smart contracts and an access control mechanism to effectively track the behavior of the data and revoke access to offending entities on detection of violation of permissions on data. The performance of MeDShare is comparable to current cutting edge solutions to data sharing among cloud service providers. By implementing MeDShare, cloud service providers and other data guardians will be able to achieve data provenance and auditing while sharing medical data with entities such as research and medical institutions with minimal risk to data privacy.

819 citations


Journal ArticleDOI
TL;DR: The assessment of COPD has been refined to separate the spirometric assessment from symptom evaluation, and the concept of de-escalation of therapy is introduced in the treatment assessment scheme.
Abstract: This Executive Summary of the Global Strategy for the Diagnosis, Management, and Prevention of COPD (GOLD) 2017 Report focuses primarily on the revised and novel parts of the document. The most significant changes include: 1) the assessment of COPD has been refined to separate the spirometric assessment from symptom evaluation. ABCD groups are now proposed to be derived exclusively from patient symptoms and their history of exacerbations; 2) for each of the groups A to D, escalation strategies for pharmacological treatments are proposed; 3) the concept of de-escalation of therapy is introduced in the treatment assessment scheme; 4) nonpharmacologic therapies are comprehensively presented and; 5) the importance of comorbid conditions in managing COPD is reviewed.

818 citations


Journal ArticleDOI
TL;DR: This survey will explore the most relevant limitations of IoT devices and their solutions, and present the classification of IoT attacks, and analyze the security issues in different layers.
Abstract: Internet-of-Things (IoT) are everywhere in our daily life. They are used in our homes, in hospitals, deployed outside to control and report the changes in environment, prevent fires, and many more beneficial functionality. However, all those benefits can come of huge risks of privacy loss and security issues. To secure the IoT devices, many research works have been conducted to countermeasure those problems and find a better way to eliminate those risks, or at least minimize their effects on the user’s privacy and security requirements. The survey consists of four segments. The first segment will explore the most relevant limitations of IoT devices and their solutions. The second one will present the classification of IoT attacks. The next segment will focus on the mechanisms and architectures for authentication and access control. The last segment will analyze the security issues in different layers.

804 citations


Journal ArticleDOI
15 Feb 2017-Nature
TL;DR: It is shown that hyperexpansion of the cortical surface area between 6 and 12 months of age precedes brain volume overgrowth observed between 12 and 24 months in 15 high-risk infants who were diagnosed with autism at 24 months.
Abstract: Autism spectrum disorder (ASD) is associated with brain overgrowth, but it has been unclear how this relates to behavioural symptoms. In a longitudinal neuroimaging study of young children at high familial risk of autism, Heather Hazlett and colleagues now show that high-risk children who receive a diagnosis of ASD at 24 months of age had an increased cortical growth rate at 612 months. Early overgrowth in high-risk children is associated with social impairments at 24 months, and imaging data obtained at 6 and 12 months can predict an ASD diagnosis at 24 months in high-risk children. These findings indicate that differences in the developmental trajectory towards ASD emerge as early as the first year of life.

737 citations


Journal ArticleDOI
06 Jan 2017-Science
TL;DR: The energy-minimizing electron densities for atomic species, as produced by 128 historical and modern DFT functionals, were found to become closer to the exact ones until the early 2000s, when this trend was reversed by unconstrained functionals sacrificing physical rigor for the flexibility of empirical fitting.
Abstract: The theorems at the core of density functional theory (DFT) state that the energy of a many-electron system in its ground state is fully defined by its electron density distribution. This connection is made via the exact functional for the energy, which minimizes at the exact density. For years, DFT development focused on energies, implicitly assuming that functionals producing better energies become better approximations of the exact functional. We examined the other side of the coin: the energy-minimizing electron densities for atomic species, as produced by 128 historical and modern DFT functionals. We found that these densities became closer to the exact ones, reflecting theoretical advances, until the early 2000s, when this trend was reversed by unconstrained functionals sacrificing physical rigor for the flexibility of empirical fitting.

732 citations


Journal ArticleDOI
TL;DR: The assessment of chronic obstructive pulmonary disease has been refined to separate the spirometric assessment from symptom evaluation, and the concept of de‐escalation of therapy is introduced in the treatment assessment scheme.
Abstract: This Executive Summary of the Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017 Report focuses primarily on the revised and novel parts of the document. The most significant changes include: (i) the assessment of chronic obstructive pulmonary disease has been refined to separate the spirometric assessment from symptom evaluation. ABCD groups are now proposed to be derived exclusively from patient symptoms and their history of exacerbations; (ii) for each of the groups A to D, escalation strategies for pharmacological treatments are proposed; (iii) the concept of de-escalation of therapy is introduced in the treatment assessment scheme; (iv)non-pharmacological therapies are comprehensively presented and (v) the importance of co-morbid conditions in managing COPD is reviewed.

Journal ArticleDOI
TL;DR: Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct, and co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H 3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H2.1K 27M are identified.

Journal ArticleDOI
TL;DR: In this paper, the authors exploit the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells, which form a rich class of quaternary halides in double-perovskite structure.
Abstract: Hybrid organic–inorganic halide perovskites with the prototype material of CH3NH3PbI3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues—the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb2+—need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb2+ ions into one monovalent M+ and one trivalent M3+ ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screen...

Journal ArticleDOI
TL;DR: A systematic review of the unpublished and published, peer-reviewed literature examining the relationship between interpersonal theory constructs and suicidal thoughts and behaviors supported the interpersonal theory; and alternative configurations of theory variables were similarly useful for predicting suicide risk as theory-consistent pathways.
Abstract: Over the past decade, the interpersonal theory of suicide has contributed to substantial advances in the scientific and clinical understanding of suicide and related conditions. The interpersonal theory of suicide posits that suicidal desire emerges when individuals experience intractable feelings of perceived burdensomeness and thwarted belongingness and near-lethal or lethal suicidal behavior occurs in the presence of suicidal desire and capability for suicide. A growing number of studies have tested these posited pathways in various samples; however, these findings have yet to be evaluated meta-analytically. This paper aimed to (a) conduct a systematic review of the unpublished and published, peer-reviewed literature examining the relationship between interpersonal theory constructs and suicidal thoughts and behaviors, (b) conduct meta-analyses testing the interpersonal theory hypotheses, and (c) evaluate the influence of various moderators on these relationships. Four electronic bibliographic databases were searched through the end of March, 2016: PubMed, Medline, PsycINFO, and Web of Science. Hypothesis-driven meta-analyses using random effects models were conducted using 122 distinct unpublished and published samples. Findings supported the interpersonal theory: the interaction between thwarted belongingness and perceived burdensomeness was significantly associated with suicidal ideation; and the interaction between thwarted belongingness, perceived burdensomeness, and capability for suicide was significantly related to a greater number of prior suicide attempts. However, effect sizes for these interactions were modest. Alternative configurations of theory variables were similarly useful for predicting suicide risk as theory-consistent pathways. We conclude with limitations and recommendations for the interpersonal theory as a framework for understanding the suicidal spectrum. (PsycINFO Database Record

Journal ArticleDOI
TL;DR: Existing metrics in phylogenetic diversity metrics are organized by expanding on a unifying framework for phylogenetic information to improve the choice, application, and interpretation of phylo‐diversity metrics.
Abstract: The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub-disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub-disciplines hampers potential meta-analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo-diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information. Generally, questions about phylogenetic relationships within or between assemblages tend to ask three types of question: how much; how different; or how regular? We show that these questions reflect three dimensions of a phylogenetic tree: richness, divergence, and regularity. We classify 70 existing phylo-diversity metrics based on their mathematical form within these three dimensions and identify ‘anchor’ representatives: for α-diversity metrics these are PD (Faith's phylogenetic diversity), MPD (mean pairwise distance), and VPD (variation of pairwise distances). By analysing mathematical formulae and using simulations, we use this framework to identify metrics that mix dimensions, and we provide a guide to choosing and using the most appropriate metrics. We show that metric choice requires connecting the research question with the correct dimension of the framework and that there are logical approaches to selecting and interpreting metrics. The guide outlined herein will help researchers navigate the current jungle of indices.

Journal ArticleDOI
29 Mar 2017-Nature
TL;DR: The state of recent discoveries is surveyed, viewpoints that suggest that coherence can be used in complex chemical systems are presented, and the role of coherence as a design element in realizing function is discussed.
Abstract: Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.

Posted Content
Yonit Hochberg1, Yonit Hochberg2, A. N. Villano3, Andrei Afanasev4  +238 moreInstitutions (98)
TL;DR: The white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.
Abstract: This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.

Journal ArticleDOI
TL;DR: The assessment of chronic obstructive pulmonary disease has been refined to separate the spirometric assessment from symptom evaluation, and the importance of comorbid conditions in managing COPD is reviewed.
Abstract: This Executive Summary of the Global Strategy for the Diagnosis, Management, and Prevention of COPD (GOLD) 2017 Report focuses primarily on the revised and novel parts of the document. The most significant changes include: 1) the assessment of chronic obstructive pulmonary disease has been refined to separate the spirometric assessment from symptom evaluation. ABCD groups are now proposed to be derived exclusively from patient symptoms and their history of exacerbations; 2) for each of the groups A to D, escalation strategies for pharmacological treatments are proposed; 3) the concept of de-escalation of therapy is introduced in the treatment assessment scheme; 4) nonpharmacologic therapies are comprehensively presented and; 5) the importance of comorbid conditions in managing COPD is reviewed.

Journal ArticleDOI
TL;DR: The Task Force providedRecommendations related to corticosteroid therapy, antibiotic therapy, noninvasive mechanical ventilation, home-based management, and early pulmonary rehabilitation in patients having a COPD exacerbation should be reconsidered as new evidence becomes available.
Abstract: This document provides clinical recommendations for treatment of chronic obstructive pulmonary disease (COPD) exacerbations.Comprehensive evidence syntheses, including meta-analyses, were performed to summarise all available evidence relevant to the Task Force's questions. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach and the results were summarised in evidence profiles. The evidence syntheses were discussed and recommendations formulated by a multidisciplinary Task Force of COPD experts.After considering the balance of desirable and undesirable consequences, quality of evidence, feasibility, and acceptability of various interventions, the Task Force made: 1) a strong recommendation for noninvasive mechanical ventilation of patients with acute or acute-on-chronic respiratory failure; 2) conditional recommendations for oral corticosteroids in outpatients, oral rather than intravenous corticosteroids in hospitalised patients, antibiotic therapy, home-based management, and the initiation of pulmonary rehabilitation within 3 weeks after hospital discharge; and 3) a conditional recommendation against the initiation of pulmonary rehabilitation during hospitalisation.The Task Force provided recommendations related to corticosteroid therapy, antibiotic therapy, noninvasive mechanical ventilation, home-based management, and early pulmonary rehabilitation in patients having a COPD exacerbation. These recommendations should be reconsidered as new evidence becomes available.

Journal ArticleDOI
TL;DR: The roles tumour-associated macrophages (TAMs) play in regulating different steps of tumour progression and metastasis, and the opportunities to target them in the quest for cancer prevention and treatment are discussed.
Abstract: Macrophages are conventionally classified into M1 and M2 subtypes according to their differentiation status and functional role in the immune system. However, accumulating evidence suggests that this binary classification system is insufficient to account for the remarkable plasticity of macrophages that gives rise to an immense diversity of subtypes. This diverse spectrum of macrophage subtypes play critical roles in various homeostatic and immune functions, but remain far from being fully characterised. In addition to their roles in normal physiological conditions, macrophages also play crucial roles in disease conditions such as cancer. In this review, we discuss the roles tumour-associated macrophages (TAMs) play in regulating different steps of tumour progression and metastasis, and the opportunities to target them in the quest for cancer prevention and treatment.

Journal ArticleDOI
TL;DR: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added.
Abstract: The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

Journal ArticleDOI
TL;DR: Interference between the short- and long-range (Coulomb) couplings gives rise to a host of new aggregate types, referred to as HH, HJ, JH, and JJ aggregates, with distinct photophysical properties, which can be exploited for electronic materials design.
Abstract: ConspectusThe transport and photophysical properties of organic molecular aggregates, films, and crystals continue to receive widespread attention, driven mainly by expanding commercial applications involving display and wearable technologies as well as the promise of efficient, large-area solar cells. The main blueprint for understanding how molecular packing impacts photophysical properties was drafted over five decades ago by Michael Kasha. Kasha showed that the Coulombic coupling between two molecules, as determined by the alignment of their transition dipoles, induces energetic shifts in the main absorption spectral peak and changes in the radiative decay rate when compared to uncoupled molecules. In H-aggregates, the transition dipole moments align “side-by-side” leading to a spectral blue-shift and suppressed radiative decay rate, while in J-aggregates, the transition dipole moments align “head-to-tail” leading to a spectral red-shift and an enhanced radiative decay rate. Although many examples of ...

Journal ArticleDOI
TL;DR: The intent here is to define areas of agreement and areas requiring further elucidation related to the regenerative potential of the myocardium itself and to formulate a consensus for many of the pertinent questions.
Abstract: Cell therapy is an exciting option for repairing the injured heart, one that has attracted considerable interest over the past 15 years. Consensus exists that the injection/infusion or tissue-based implantation of various cell types may exert therapeutic effects,1–3 and there is general agreement that additional molecular, translational, and clinical studies are required to define the optimal cell source, method of delivery, and underlying mechanism(s) of action. One of the remaining questions in this field pertains to cardiomyocyte turnover under normal and diseased conditions and its contribution to the beneficial effects of cell therapy. Although results published in the literature have not been consistent, we believe that the time is ripe to formulate a consensus for many of the pertinent questions. It is important to emphasize that the focus of this consensus statement is on cardiomyocyte renewal; it is not on cell therapy in general. Although we touch on some aspects of therapeutic strategies based on delivery of exogenous cells, our intent here is to define areas of agreement and areas requiring further elucidation related to the regenerative potential of the myocardium itself. We have included references to the scientific literature throughout the document. Although it is impossible for us to include all publications in this expansive field, representative studies that corroborate statements herein have been cited. 1. Definition of cardiomyocyte renewal. In this consensus statement, the term cardiomyocyte renewal is defined as the ability to replace lost cardiomyocytes by new ones. It is distinct from the turnover of cardiac proteins or the generation of polyploid cardiomyocytes (ie, those harboring >2 sets of chromosomes), either by nuclear division giving rise to multinucleation or by duplication of DNA without nuclear division resulting in polyploid nuclei. 2. Naturally occurring cardiomyocyte renewal and proliferation. 1. During normal mammalian development 1. Growth of the heart during …

Journal ArticleDOI
TL;DR: Using mouse melanoma models, it is reported that CD8+ TILs enhance peroxisome proliferator-activated receptor (PPAR)-α signaling and catabolism of fatty acids (FAs) when simultaneously subjected to hypoglycemia and hypoxia.

Journal ArticleDOI
TL;DR: Risk of noncancer deaths now surpasses that of cancer deaths, particularly for young patients in the year after diagnosis, particularly if they are diagnosed with testicular cancer.

Journal ArticleDOI
TL;DR: Synthetic approaches aiming to reengineer natural products into potent antibiotics, as well as narrow-spectrum pathogen-specific antibiotics, are analyzed given new insights into the implications of disrupting the microbiome.
Abstract: Natural products have served as powerful therapeutics against pathogenic bacteria since the golden age of antibiotics of the mid-20th century. However, the increasing frequency of antibiotic-resistant infections clearly demonstrates that new antibiotics are critical for modern medicine. Because combinatorial approaches have not yielded effective drugs, we propose that the development of new antibiotics around proven natural scaffolds is the best short-term solution to the rising crisis of antibiotic resistance. We analyze herein synthetic approaches aiming to reengineer natural products into potent antibiotics. Furthermore, we discuss approaches in modulating quorum sensing and biofilm formation as a nonlethal method, as well as narrow-spectrum pathogen-specific antibiotics, which are of interest given new insights into the implications of disrupting the microbiome.

Journal ArticleDOI
TL;DR: This review focuses primarily on three facets of cognition that are clearly implicated in public discourse regarding the impacts of mobile technology – attention, memory, and delay of gratification – and seeks to determine in which domains of functioning there is accruing evidence of a significant relationship between smartphone technology and cognitive performance.
Abstract: While smartphones and related mobile technologies are recognized as flexible and powerful tools that, when used prudently, can augment human cognition, there is also a growing perception that habitual involvement with these devices may have a negative and lasting impact on users’ ability to think, remember, pay attention, and regulate emotion. The present review considers an intensifying, though still limited, area of research exploring the potential cognitive impacts of smartphone-related habits, and seeks to determine in which domains of functioning there is accruing evidence of a significant relationship between smartphone technology and cognitive performance, and in which domains the scientific literature is not yet mature enough to endorse any firm conclusions. We focus our review primarily on three facets of cognition that are clearly implicated in public discourse regarding the impacts of mobile technology – attention, memory, and delay of gratification – and then consider evidence regarding the broader relationships between smartphone habits and everyday cognitive functioning. Along the way, we highlight compelling findings, discuss limitations with respect to empirical methodology and interpretation, and offer suggestions for how the field might progress toward a more coherent and robust area of scientific inquiry.​

Journal ArticleDOI
TL;DR: A novel structured matrix decomposition model with two structural regularizations that captures the image structure and enforces patches from the same object to have similar saliency values, and a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space is proposed.
Abstract: Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.

Journal ArticleDOI
TL;DR: Self-monitoring alone is not associated with lower BP or better control, but in conjunction with co-interventions leads to clinically significant BP reduction which persists for at least 12 months.
Abstract: © 2017 Tucker et al. Background: Self-monitoring of blood pressure (BP) appears to reduce BP in hypertension but important questions remain regarding effective implementation and which groups may benefit most. This individual patient data (IPD) meta-analysis was performed to better understand the effectiveness of BP self-monitoring to lower BP and control hypertension. Methods and findings: Medline, Embase, and the Cochrane Library were searched for randomised trials comparing self-monitoring to no self-monitoring in hypertensive patients (June 2016). Two reviewers independently assessed articles for eligibility and the authors of eligible trials were approached requesting IPD. Of 2,846 articles in the initial search, 36 were eligible. IPD were provided from 25 trials, including 1 unpublished study. Data for the primary outcomes—change in mean clinic or ambulatory BP and proportion controlled below target at 12 months—were available from 15/19 possible studies (7,138/8,292 [86%] of randomised participants). Overall, self-monitoring was associated with reduced clinic systolic blood pressure (sBP) compared to usual care at 12 months (−3.2 mmHg, [95% CI −4.9, −1.6 mmHg]). However, this effect was strongly influenced by the intensity of co-intervention ranging from no effect with self-monitoring alone (−1.0 mmHg [−3.3, 1.2]), to a 6.1 mmHg (−9.0, −3.2) reduction when monitoring was combined with intensive support. Self-monitoring was most effective in those with fewer antihypertensive medications and higher baseline sBP up to 170 mmHg. No differences in efficacy were seen by sex or by most comorbidities. Ambulatory BP data at 12 months were available from 4 trials (1,478 patients), which assessed self-monitoring with little or no co-intervention. There was no association between self-monitoring and either lower clinic or ambulatory sBP in this group (clinic −0.2 mmHg [−2.2, 1.8]; ambulatory 1.1 mmHg [−0.3, 2.5]). Results for diastolic blood pressure (dBP) were similar. The main limitation of this work was that significant heterogeneity remained. This was at least in part due to different inclusion criteria, self-monitoring regimes, and target BPs in included studies. Conclusions: Self-monitoring alone is not associated with lower BP or better control, but in conjunction with co-interventions (including systematic medication titration by doctors, pharmacists, or patients; education; or lifestyle counselling) leads to clinically significant BP reduction which persists for at least 12 months. The implementation of self-monitoring in hypertension should be accompanied by such co-interventions.

Journal ArticleDOI
TL;DR: The strongly constrained and appropriately normed (SCAN) density functional as discussed by the authors describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water.
Abstract: Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice Ih at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner.