scispace - formally typeset
Search or ask a question

Showing papers by "University of Aberdeen published in 2016"


Journal ArticleDOI
12 Oct 2016-BMJ
TL;DR: Risk of Bias In Non-randomised Studies - of Interventions is developed, a new tool for evaluating risk of bias in estimates of the comparative effectiveness of interventions from studies that did not use randomisation to allocate units or clusters of individuals to comparison groups.
Abstract: Non-randomised studies of the effects of interventions are critical to many areas of healthcare evaluation, but their results may be biased. It is therefore important to understand and appraise their strengths and weaknesses. We developed ROBINS-I (“Risk Of Bias In Non-randomised Studies - of Interventions”), a new tool for evaluating risk of bias in estimates of the comparative effectiveness (harm or benefit) of interventions from studies that did not use randomisation to allocate units (individuals or clusters of individuals) to comparison groups. The tool will be particularly useful to those undertaking systematic reviews that include non-randomised studies.

8,028 citations


Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present an extension to the Consolidated Standards of Reporting Trials (CONSORT) statement for randomised pilot and feasibility trials conducted in advance of a future definitive RCT.
Abstract: The Consolidated Standards of Reporting Trials (CONSORT) statement is a guideline designed to improve the transparency and quality of the reporting of randomised controlled trials (RCTs). In this article we present an extension to that statement for randomised pilot and feasibility trials conducted in advance of a future definitive RCT. The checklist applies to any randomised study in which a future definitive RCT, or part of it, is conducted on a smaller scale, regardless of its design (eg, cluster, factorial, crossover) or the terms used by authors to describe the study (eg, pilot, feasibility, trial, study). The extension does not directly apply to internal pilot studies built into the design of a main trial, non-randomised pilot and feasibility studies, or phase II studies, but these studies all have some similarities to randomised pilot and feasibility studies and so many of the principles might also apply. The development of the extension was motivated by the growing number of studies described as feasibility or pilot studies and by research that has identified weaknesses in their reporting and conduct. We followed recommended good practice to develop the extension, including carrying out a Delphi survey, holding a consensus meeting and research team meetings, and piloting the checklist. The aims and objectives of pilot and feasibility randomised studies differ from those of other randomised trials. Consequently, although much of the information to be reported in these trials is similar to those in randomised controlled trials (RCTs) assessing effectiveness and efficacy, there are some key differences in the type of information and in the appropriate interpretation of standard CONSORT reporting items. We have retained some of the original CONSORT statement items, but most have been adapted, some removed, and new items added. The new items cover how participants were identified and consent obtained; if applicable, the prespecified criteria used to judge whether or how to proceed with a future definitive RCT; if relevant, other important unintended consequences; implications for progression from pilot to future definitive RCT, including any proposed amendments; and ethical approval or approval by a research review committee confirmed with a reference number. This article includes the 26 item checklist, a separate checklist for the abstract, a template for a CONSORT flowchart for these studies, and an explanation of the changes made and supporting examples. We believe that routine use of this proposed extension to the CONSORT statement will result in improvements in the reporting of pilot trials. Editor’s note: In order to encourage its wide dissemination this article is freely accessible on the BMJ and Pilot and Feasibility Studies journal websites.

1,799 citations


Journal ArticleDOI
TL;DR: NEC can be used as an effective rehabilitation tool to develop compensatory strategies in patients with visual field deficits after brain injury and improvements in patients were significantly greater than those in a group of healthy adults.
Abstract: Visual field deficits are common in patients with damaged retinogeniculostriate pathways. The patient's eye movements are often affected leading to inefficient visual search. Systematic eye movement training also called compensatory therapy is needed to allow patients to develop effective coping strategies. There is a lack of evidence-based, clinical gold-standard registered medical device accessible to patients at home or in clinical settings and NeuroEyeCoach (NEC) is developed to address this need. In three experiments, we report on performance of patients on NEC compared to the data obtained previously on the earlier versions of the search task (n = 32); we assessed whether the self-administered computerised tasks can be used to monitor the progress (n = 24) and compared the findings in a subgroup of patients to a healthy control group. Performance on cancellation tasks, simple visual search, and self-reported responses on activities of daily living was compared, before and after training. Patients performed similarly well on NEC as on previous versions of the therapy; the inbuilt functionality for pre- and postevaluation functions was sensitive to allowing assessment of improvements; and improvements in patients were significantly greater than those in a group of healthy adults. In conclusion, NeuroEyeCoach can be used as an effective rehabilitation tool to develop compensatory strategies in patients with visual field deficits after brain injury.

1,784 citations


Journal ArticleDOI
01 Feb 2016-Gut
TL;DR: The potential of manipulating the gut microbiota in these disorders is assessed, with an examination of the latest and most relevant evidence relating to antibiotics, probiotics, prebiotics, polyphenols and faecal microbiota transplantation.
Abstract: Over the last 10–15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new ‘omic’ technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial community, revealing it to be comparable in influence to a new organ in the body and offering the possibility of a new route for therapeutic intervention. Moreover, it might be more accurate to think of it like an immune system: a collection of cells that work in unison with the host and that can promote health but sometimes initiate disease. This review gives an update on the current knowledge in the area of gut disorders, in particular metabolic syndrome and obesity-related disease, liver disease, IBD and colorectal cancer. The potential of manipulating the gut microbiota in these disorders is assessed, with an examination of the latest and most relevant evidence relating to antibiotics, probiotics, prebiotics, polyphenols and faecal microbiota transplantation.

1,596 citations


Journal ArticleDOI
07 Apr 2016-Nature
TL;DR: ‘state of the art’ soil greenhouse gas research is highlighted, mitigation practices and potentials are summarized, gaps in data and understanding are identified and ways to close such gaps are suggested through new research, technology and collaboration.
Abstract: Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight 'state of the art' soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.

1,221 citations


Journal ArticleDOI
Aysu Okbay1, Jonathan P. Beauchamp2, Mark Alan Fontana3, James J. Lee4  +293 moreInstitutions (81)
26 May 2016-Nature
TL;DR: In this article, the results of a genome-wide association study (GWAS) for educational attainment were reported, showing that single-nucleotide polymorphisms associated with educational attainment disproportionately occur in genomic regions regulating gene expression in the fetal brain.
Abstract: Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.

1,102 citations


Journal ArticleDOI
07 Apr 2016
TL;DR: In this paper, the authors explore and discuss how soil scientists can help to reach the recently adopted UN Sustainable Development Goals (SDGs) in the most effective manner and recommend the following steps to be taken by the soil science community as a whole: (i) embrace the UN SDGs, as they provide a platform that allows soil science to demonstrate its relevance for realizing a sustainable society by 2030; (ii) show the specific value of soil science: research should explicitly show how using modern soil information can improve the results of inter-and transdisciplinary studies on SDGs related to food security
Abstract: . In this forum paper we discuss how soil scientists can help to reach the recently adopted UN Sustainable Development Goals (SDGs) in the most effective manner. Soil science, as a land-related discipline, has important links to several of the SDGs, which are demonstrated through the functions of soils and the ecosystem services that are linked to those functions (see graphical abstract in the Supplement). We explore and discuss how soil scientists can rise to the challenge both internally, in terms of our procedures and practices, and externally, in terms of our relations with colleague scientists in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the following steps to be taken by the soil science community as a whole: (i) embrace the UN SDGs, as they provide a platform that allows soil science to demonstrate its relevance for realizing a sustainable society by 2030; (ii) show the specific value of soil science: research should explicitly show how using modern soil information can improve the results of inter- and transdisciplinary studies on SDGs related to food security, water scarcity, climate change, biodiversity loss and health threats; (iii) take leadership in overarching system analysis of ecosystems, as soils and soil scientists have an integrated nature and this places soil scientists in a unique position; (iii) raise awareness of soil organic matter as a key attribute of soils to illustrate its importance for soil functions and ecosystem services; (iv) improve the transfer of knowledge through knowledge brokers with a soil background; (v) start at the basis: educational programmes are needed at all levels, starting in primary schools, and emphasizing practical, down-to-earth examples; (vi) facilitate communication with the policy arena by framing research in terms that resonate with politicians in terms of the policy cycle or by considering drivers, pressures and responses affecting impacts of land use change; and finally (vii) all this is only possible if researchers, with soil scientists in the front lines, look over the hedge towards other disciplines, to the world at large and to the policy arena, reaching over to listen first, as a basis for genuine collaboration.

1,010 citations


Journal ArticleDOI
TL;DR: In this article, the authors quantify potential global impacts of different negative emissions technologies on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application.
Abstract: To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.

974 citations


Journal ArticleDOI
TL;DR: In this article, the authors present the issues and opportunities associated with generating and validating time-series informed annual, large-area, land cover products, and identify methods suited to incorporating time series information and other novel inputs for land cover characterization.
Abstract: Accurate land cover information is required for science, monitoring, and reporting. Land cover changes naturally over time, as well as a result of anthropogenic activities. Monitoring and mapping of land cover and land cover change in a consistent and robust manner over large areas is made possible with Earth Observation (EO) data. Land cover products satisfying a range of science and policy information needs are currently produced periodically at different spatial and temporal scales. The increased availability of EO data—particularly from the Landsat archive (and soon to be augmented with Sentinel-2 data)—coupled with improved computing and storage capacity with novel image compositing approaches, have resulted in the availability of annual, large-area, gap-free, surface reflectance data products. In turn, these data products support the development of annual land cover products that can be both informed and constrained by change detection outputs. The inclusion of time series change in the land cover mapping process provides information on class stability and informs on logical class transitions (both temporally and categorically). In this review, we present the issues and opportunities associated with generating and validating time-series informed annual, large-area, land cover products, and identify methods suited to incorporating time series information and other novel inputs for land cover characterization.

784 citations


Journal ArticleDOI
01 Jun 2016-BMJ Open
TL;DR: Chronic pain affects between one-third and one-half of the population of the UK, corresponding to just under 28 million adults, based on data from the best available published studies, and is likely to increase further in line with an ageing population.
Abstract: Objectives There is little consensus regarding the burden of pain in the UK. The purpose of this review was to synthesise existing data on the prevalence of various chronic pain phenotypes in order to produce accurate and contemporary national estimates. Design Major electronic databases were searched for articles published after 1990, reporting population-based prevalence estimates of chronic pain (pain lasting >3 months), chronic widespread pain, fibromyalgia and chronic neuropathic pain. Pooled prevalence estimates were calculated for chronic pain and chronic widespread pain. Results Of the 1737 articles generated through our searches, 19 studies matched our inclusion criteria, presenting data from 139 933 adult residents of the UK. The prevalence of chronic pain, derived from 7 studies, ranged from 35.0% to 51.3% (pooled estimate 43.5%, 95% CIs 38.4% to 48.6%). The prevalence of moderate-severely disabling chronic pain (Von Korff grades III/IV), based on 4 studies, ranged from 10.4% to 14.3%. 12 studies stratified chronic pain prevalence by age group, demonstrating a trend towards increasing prevalence with increasing age from 14.3% in 18–25 years old, to 62% in the over 75 age group, although the prevalence of chronic pain in young people (18–39 years old) may be as high as 30%. Reported prevalence estimates were summarised for chronic widespread pain (pooled estimate 14.2%, 95% CI 12.3% to 16.1%; 5 studies), chronic neuropathic pain (8.2% to 8.9%; 2 studies) and fibromyalgia (5.4%; 1 study). Chronic pain was more common in female than male participants, across all measured phenotypes. Conclusions Chronic pain affects between one-third and one-half of the population of the UK, corresponding to just under 28 million adults, based on data from the best available published studies. This figure is likely to increase further in line with an ageing population.

Journal ArticleDOI
15 Mar 2016-PLOS ONE
TL;DR: A framework for defining pilot and feasibility studies focusing on studies conducted in preparation for a randomised controlled trial is described, suggesting that to facilitate their identification, these studies should be clearly identified using the terms ‘feasibility’ or ‘pilot’ as appropriate.
Abstract: We describe a framework for defining pilot and feasibility studies focusing on studies conducted in preparation for a randomised controlled trial. To develop the framework, we undertook a Delphi survey; ran an open meeting at a trial methodology conference; conducted a review of definitions outside the health research context; consulted experts at an international consensus meeting; and reviewed 27 empirical pilot or feasibility studies. We initially adopted mutually exclusive definitions of pilot and feasibility studies. However, some Delphi survey respondents and the majority of open meeting attendees disagreed with the idea of mutually exclusive definitions. Their viewpoint was supported by definitions outside the health research context, the use of the terms 'pilot' and 'feasibility' in the literature, and participants at the international consensus meeting. In our framework, pilot studies are a subset of feasibility studies, rather than the two being mutually exclusive. A feasibility study asks whether something can be done, should we proceed with it, and if so, how. A pilot study asks the same questions but also has a specific design feature: in a pilot study a future study, or part of a future study, is conducted on a smaller scale. We suggest that to facilitate their identification, these studies should be clearly identified using the terms 'feasibility' or 'pilot' as appropriate. This should include feasibility studies that are largely qualitative; we found these difficult to identify in electronic searches because researchers rarely used the term 'feasibility' in the title or abstract of such studies. Investigators should also report appropriate objectives and methods related to feasibility; and give clear confirmation that their study is in preparation for a future randomised controlled trial designed to assess the effect of an intervention.

Journal ArticleDOI
09 Sep 2016-Science
TL;DR: This work identifies six biological mechanisms that commonly shape responses to climate change yet are too often missing from current predictive models and prioritize the types of information needed to inform each of these mechanisms, and suggests proxies for data that are missing or difficult to collect.
Abstract: BACKGROUND As global climate change accelerates, one of the most urgent tasks for the coming decades is to develop accurate predictions about biological responses to guide the effective protection of biodiversity. Predictive models in biology provide a means for scientists to project changes to species and ecosystems in response to disturbances such as climate change. Most current predictive models, however, exclude important biological mechanisms such as demography, dispersal, evolution, and species interactions. These biological mechanisms have been shown to be important in mediating past and present responses to climate change. Thus, current modeling efforts do not provide sufficiently accurate predictions. Despite the many complexities involved, biologists are rapidly developing tools that include the key biological processes needed to improve predictive accuracy. The biggest obstacle to applying these more realistic models is that the data needed to inform them are almost always missing. We suggest ways to fill this growing gap between model sophistication and information to predict and prevent the most damaging aspects of climate change for life on Earth. ADVANCES On the basis of empirical and theoretical evidence, we identify six biological mechanisms that commonly shape responses to climate change yet are too often missing from current predictive models: physiology; demography, life history, and phenology; species interactions; evolutionary potential and population differentiation; dispersal, colonization, and range dynamics; and responses to environmental variation. We prioritize the types of information needed to inform each of these mechanisms and suggest proxies for data that are missing or difficult to collect. We show that even for well-studied species, we often lack critical information that would be necessary to apply more realistic, mechanistic models. Consequently, data limitations likely override the potential gains in accuracy of more realistic models. Given the enormous challenge of collecting this detailed information on millions of species around the world, we highlight practical methods that promote the greatest gains in predictive accuracy. Trait-based approaches leverage sparse data to make more general inferences about unstudied species. Targeting species with high climate sensitivity and disproportionate ecological impact can yield important insights about future ecosystem change. Adaptive modeling schemes provide a means to target the most important data while simultaneously improving predictive accuracy. OUTLOOK Strategic collections of essential biological information will allow us to build generalizable insights that inform our broader ability to anticipate species’ responses to climate change and other human-caused disturbances. By increasing accuracy and making uncertainties explicit, scientists can deliver improved projections for biodiversity under climate change together with characterizations of uncertainty to support more informed decisions by policymakers and land managers. Toward this end, a globally coordinated effort to fill data gaps in advance of the growing climate-fueled biodiversity crisis offers substantial advantages in efficiency, coverage, and accuracy. Biologists can take advantage of the lessons learned from the Intergovernmental Panel on Climate Change’s development, coordination, and integration of climate change projections. Climate and weather projections were greatly improved by incorporating important mechanisms and testing predictions against global weather station data. Biology can do the same. We need to adopt this meteorological approach to predicting biological responses to climate change to enhance our ability to mitigate future changes to global biodiversity and the services it provides to humans.

Journal ArticleDOI
TL;DR: Cardiorespiratory training and, to a lesser extent, mixed training reduce disability during or after usual stroke care; this could be mediated by improved mobility and balance.
Abstract: Stroke patients have impaired physical fitness and this may exacerbate their disability. It is not known whether improving physical fitness after stroke reduces disability. Objectives The primary aims were to establish whether physical fitness training reduces death, dependence and disability after stroke. The secondary aims included an investigation of the effects of fitness training on secondary outcome measures (including, physical fitness, mobility, physical function, health and quality of life, mood and the incidence of adverse events). Randomised controlled trials were included when an intervention represented a clear attempt to improve either muscle strength and/or cardiorespiratory fitness, and whose control groups comprised either usual care or a non-exercise intervention. A total of 12 trials were included in the review. No trials reported death and dependence data. Two small trials reporting disability showed no evidence of benefit. The remaining available secondary outcome data suggest that cardiorespiratory training improves walking ability (mobility). Observed benefits appear to be associated with specific or 'task-related' training.

Journal ArticleDOI
28 Jun 2016-BMJ
TL;DR: Decision-making processes and the factors (criteria) that decision makers should consider vary for different types of decisions, including clinical recommendations, coverage decisions, and health system or public health recommendations or decisions.
Abstract: #### Summary points Healthcare decision making is complex. Decision-making processes and the factors (criteria) that decision makers should consider vary for different types of decisions, including clinical recommendations, coverage decisions, and health system or public health recommendations or decisions.1 2 3 4 However, some criteria are relevant for all of these decisions, including the anticipated effects of the options being considered, the certainty of the evidence for those effects (also referred to as quality of evidence or confidence in effect estimates), and the costs and feasibility of the options. Decision makers must make judgments about each relevant factor, informed by the best evidence that is available to them. Often, the processes that decision makers use, the criteria that they consider and the evidence that they …

Journal ArticleDOI
TL;DR: In this article, the authors quantified maternal mortality throughout the world by underlying cause and age from 1990 to 2015 for ages 10-54 years by systematically compiling and processing all available data sources from 186 of 195 countries and territories.

Journal ArticleDOI
14 Jul 2016-Nature
TL;DR: A Climate Sensitivity Profile approach is applied to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity and detected systematic variation in the direction and magnitude of phenological climate sensitivity.
Abstract: Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5–2.9 days earlier on average), with substantial taxonomic variation (1.1–14.8 days earlier on average).

Journal ArticleDOI
Haidong Wang1, Zulfiqar A Bhutta2, Zulfiqar A Bhutta3, Matthew M Coates1  +610 moreInstitutions (263)
TL;DR: The Global Burden of Disease 2015 Study provides an analytical framework to comprehensively assess trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time and decomposed the changes in under- 5 mortality to changes in SDI at the global level.

Journal ArticleDOI
TL;DR: The state-of-the-art understanding of these global change pressures on soils is reported, knowledge gaps and research challenges are identified and actions and policies to minimize adverse environmental impacts arising from theseglobal change drivers are highlighted.
Abstract: Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.

Journal ArticleDOI
03 Nov 2016-PLOS ONE
TL;DR: It is revealed that environmental and health benefits are possible by shifting current Western diets to a variety of more sustainable dietary patterns, with reductions as high as 70–80% of GHG emissions and land use, and 50% of water use possible by adoptingustainable dietary patterns.
Abstract: Food production is a major driver of greenhouse gas (GHG) emissions, water and land use, and dietary risk factors are contributors to non-communicable diseases. Shifts in dietary patterns can therefore potentially provide benefits for both the environment and health. However, there is uncertainty about the magnitude of these impacts, and the dietary changes necessary to achieve them. We systematically review the evidence on changes in GHG emissions, land use, and water use, from shifting current dietary intakes to environmentally sustainable dietary patterns. We find 14 common sustainable dietary patterns across reviewed studies, with reductions as high as 70-80% of GHG emissions and land use, and 50% of water use (with medians of about 20-30% for these indicators across all studies) possible by adopting sustainable dietary patterns. Reductions in environmental footprints were generally proportional to the magnitude of animal-based food restriction. Dietary shifts also yielded modest benefits in all-cause mortality risk. Our review reveals that environmental and health benefits are possible by shifting current Western diets to a variety of more sustainable dietary patterns.

Journal ArticleDOI
TL;DR: In this article, the authors estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5GtCO(2)e yr(-1).
Abstract: The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5GtCO(2)e yr(-1). Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

Journal ArticleDOI
TL;DR: Results indicate that soil carbon sequestration and biochar have useful negative emission potential and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs.
Abstract: Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr−1) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.

Journal ArticleDOI
TL;DR: In this paper, the authors argue that the ability to predict and manage the function of these highly complex, dynamically changing communities is limited, and that close coordination of experimental data collection and method development with mathematical model building is needed to achieve significant progress in understanding of microbial dynamics and function.
Abstract: The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth’s soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model–experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved.

Journal ArticleDOI
TL;DR: Key challenges in modeling soil processes are identified, including the systematic incorporation of heterogeneity and uncertainty, the integration of data and models, and strategies for effective integration of knowledge on physical, chemical, and biological soil processes.
Abstract: The remarkable complexity of soil and its importance to a wide range of ecosystem services presents major challenges to the modeling of soil processes. Although major progress in soil models has occurred in the last decades, models of soil processes remain disjointed between disciplines or ecosystem services, with considerable uncertainty remaining in the quality of predictions and several challenges that remain yet to be addressed. First, there is a need to improve exchange of knowledge and experience among the different disciplines in soil science and to reach out to other Earth science communities. Second, the community needs to develop a new generation of soil models based on a systemic approach comprising relevant physical, chemical, and biological processes to address critical knowledge gaps in our understanding of soil processes and their interactions. Overcoming these challenges will facilitate exchanges between soil modeling and climate, plant, and social science modeling communities. It will allow us to contribute to preserve and improve our assessment of ecosystem services and advance our understanding of climate-change feedback mechanisms, among others, thereby facilitating and strengthening communication among scientific disciplines and society. We review the role of modeling soil processes in quantifying key soil processes that shape ecosystem services, with a focus on provisioning and regulating services. We then identify key challenges in modeling soil processes, including the systematic incorporation of heterogeneity and uncertainty, the integration of data and models, and strategies for effective integration of knowledge on physical, chemical, and biological soil processes. We discuss how the soil modeling community could best interface with modern modeling activities in other disciplines, such as climate, ecology, and plant research, and how to weave novel observation and measurement techniques into soil models. We propose the establishment of an international soil modeling consortium to coherently advance soil modeling activities and foster communication with other Earth science disciplines. Such a consortium should promote soil modeling platforms and data repository for model development, calibration and intercomparison essential for addressing contemporary challenges.

Journal ArticleDOI
06 Jan 2016
TL;DR: It is concluded that answering key questions on the relationship between Aβ and tau pathology should lead to a better understanding of the nature of secondary tauopathies, especially AD, and open new therapeutic targets and strategies.
Abstract: Abnormal deposition of misprocessed and aggregated proteins is a common final pathway of most neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized by the extraneuronal deposition of the amyloid β (Aβ) protein in the form of plaques and the intraneuronal aggregation of the microtubule-associated protein tau in the form of filaments. Based on the biochemically diverse range of pathological tau proteins, a number of approaches have been proposed to develop new potential therapeutics. Here we discuss some of the most promising ones: inhibition of tau phosphorylation, proteolysis and aggregation, promotion of intra- and extracellular tau clearance, and stabilization of microtubules. We also emphasize the need to achieve a full understanding of the biological roles and post-translational modifications of normal tau, as well as the molecular events responsible for selective neuronal vulnerability to tau pathology and its propagation. It is concluded that answering key questions on the relationship between Aβ and tau pathology should lead to a better understanding of the nature of secondary tauopathies, especially AD, and open new therapeutic targets and strategies.

Journal ArticleDOI
30 Jun 2016-BMJ
TL;DR: Clinicians regularly face situations with two or more alternative actions, each of which often has different advantages and disadvantages, including differences in effectiveness, adverse effects, costs and other factors.
Abstract: #### Summary points Clinicians regularly face situations with two or more alternative actions. Each alternative often has different advantages and disadvantages, including differences in effectiveness, adverse effects, costs and other factors …

Journal ArticleDOI
TL;DR: In this article, a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets is presented.
Abstract: Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

Journal ArticleDOI
TL;DR: How fungi, particularly Candida albicans, interact with phagocytic cells is described and the many factors that contribute to fungal immune evasion and prevent host elimination of these pathogenic microorganisms are discussed.
Abstract: The surveillance and elimination of fungal pathogens rely heavily on the sentinel behaviour of phagocytic cells of the innate immune system, especially macrophages and neutrophils. The efficiency by which these cells recognize, uptake and kill fungal pathogens depends on the size, shape and composition of the fungal cells and the success or failure of various fungal mechanisms of immune evasion. In this Review, we describe how fungi, particularly Candida albicans, interact with phagocytic cells and discuss the many factors that contribute to fungal immune evasion and prevent host elimination of these pathogenic microorganisms.

Journal ArticleDOI
01 Jan 2016-Gut
TL;DR: High consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment, and residence in globally distinct societies helps determine the composition of the gut microbiota that influences the production of diet-dependent gut microbial metabolites.
Abstract: Objective The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a ‘Westernised’ lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Design and results Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Conclusions Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites.

Journal ArticleDOI
12 Jan 2016-JAMA
TL;DR: Kidney failure risk equations developed in a Canadian population showed high discrimination and adequate calibration when validated in 31 multinational cohorts, but the original risk equations overestimated risk in some non-North American cohorts.
Abstract: Importance Identifying patients at risk of chronic kidney disease (CKD) progression may facilitate more optimal nephrology care. Kidney failure risk equations, including such factors as age, sex, estimated glomerular filtration rate, and calcium and phosphate concentrations, were previously developed and validated in 2 Canadian cohorts. Validation in other regions and in CKD populations not under the care of a nephrologist is needed. Objective To evaluate the accuracy of the risk equations across different geographic regions and patient populations through individual participant data meta-analysis. Data Sources Thirty-one cohorts, including 721 357 participants with CKD stages 3 to 5 in more than 30 countries spanning 4 continents, were studied. These cohorts collected data from 1982 through 2014. Study Selection Cohorts participating in the CKD Prognosis Consortium with data on end-stage renal disease. Data Extraction and Synthesis Data were obtained and statistical analyses were performed between July 2012 and June 2015. Using the risk factors from the original risk equations, cohort-specific hazard ratios were estimated and combined using random-effects meta-analysis to form new pooled kidney failure risk equations. Original and pooled kidney failure risk equation performance was compared, and the need for regional calibration factors was assessed. Main Outcomes and Measures Kidney failure (treatment by dialysis or kidney transplant). Results During a median follow-up of 4 years of 721 357 participants with CKD, 23 829 cases kidney failure were observed. The original risk equations achieved excellent discrimination (ability to differentiate those who developed kidney failure from those who did not) across all cohorts (overallCstatistic, 0.90; 95% CI, 0.89-0.92 at 2 years;Cstatistic at 5 years, 0.88; 95% CI, 0.86-0.90); discrimination in subgroups by age, race, and diabetes status was similar. There was no improvement with the pooled equations. Calibration (the difference between observed and predicted risk) was adequate in North American cohorts, but the original risk equations overestimated risk in some non-North American cohorts. Addition of a calibration factor that lowered the baseline risk by 32.9% at 2 years and 16.5% at 5 years improved the calibration in 12 of 15 and 10 of 13 non-North American cohorts at 2 and 5 years, respectively (P = .04 andP = .02). Conclusions and Relevance Kidney failure risk equations developed in a Canadian population showed high discrimination and adequate calibration when validated in 31 multinational cohorts. However, in some regions the addition of a calibration factor may be necessary.