scispace - formally typeset
Open AccessJournal ArticleDOI

A single-cell atlas of the peripheral immune response in patients with severe COVID-19.

Reads0
Chats0
TLDR
Single-cell transcriptomic analysis identifies changes in peripheral immune cells in seven hospitalized patients with COVID-19, including HLA class II downregulation, a heterogeneous interferon-stimulated gene signature and low pro-inflammatory cytokine gene expression in monocytes and lymphocytes.
Abstract
There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, which has infected more than three million people worldwide1. Approximately 20% of patients with COVID-19 develop severe disease and 5% of patients require intensive care2. Severe disease has been associated with changes in peripheral immune activity, including increased levels of pro-inflammatory cytokines3,4 that may be produced by a subset of inflammatory monocytes5,6, lymphopenia7,8 and T cell exhaustion9,10. To elucidate pathways in peripheral immune cells that might lead to immunopathology or protective immunity in severe COVID-19, we applied single-cell RNA sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) from seven patients hospitalized for COVID-19, four of whom had acute respiratory distress syndrome, and six healthy controls. We identify reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene signature, HLA class II downregulation and a developing neutrophil population that appears closely related to plasmablasts appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, we found that peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines. Collectively, we provide a cell atlas of the peripheral immune response to severe COVID-19.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment.

Jonas Schulte-Schrepping, +137 more
- 17 Sep 2020 - 
TL;DR: This study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and it reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.
References
More filters
Journal ArticleDOI

STAR: ultrafast universal RNA-seq aligner

TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Journal ArticleDOI

Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention

TL;DR: Hospitalised COVID-19 patients are frequently elderly subjects with co-morbidities receiving polypharmacy, all of which are known risk factors for d
Journal ArticleDOI

An interactive web-based dashboard to track COVID-19 in real time.

TL;DR: The outbreak of the 2019 novel coronavirus disease (COVID-19) has induced a considerable degree of fear, emotional stress and anxiety among individuals around the world.
Related Papers (5)