scispace - formally typeset
Search or ask a question

Showing papers on "Carbon cycle published in 2021"


Journal ArticleDOI
15 Jul 2021-Nature
TL;DR: In this article, the authors investigated Amazonia's carbon budget and the main drivers responsible for its change into a carbon source, and found that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions.
Abstract: Amazonia hosts the Earth's largest tropical forests and has been shown to be an important carbon sink over recent decades1-3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1-3. Here we investigate Amazonia's carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 20184. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends5-9. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia1,10.

247 citations


Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed that carbon replacement, carbon emission reduction, carbon sequestration, and carbon cycle are the four main approaches to achieve carbon neutral, among which carbon replacement is the backbone.

235 citations


Journal ArticleDOI
TL;DR: A range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Abstract: Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.

234 citations


Journal ArticleDOI
31 Mar 2021-Nature
TL;DR: This article found that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture, which is not readily apparent from land surface model simulations and observational analyses.
Abstract: Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations1. It remains uncertain to what extent temperature and water availability can explain these variations at the global scale2-5. Here we use factorial climate model simulations6 and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture-atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role4, which is not readily apparent from land surface model simulations and observational analyses2,5. These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally5,7, as well as when conducting field-scale investigations of the response of the ecosystem to droughts8,9. Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture.

163 citations


DOI
01 Nov 2021
TL;DR: In this article, the authors examined the potential for blue carbon ecosystems to act as carbon sinks and the opportunities to protect or restore ecosystems for this function, and the global potential of blue carbon ecosystem protection and restoration in climate change mitigation, through carbon sequestration and co-benefit production.
Abstract: Blue carbon ecosystems (BCEs), including mangrove forests, seagrass meadows and tidal marshes, store carbon and provide co-benefits such as coastal protection and fisheries enhancement. Blue carbon sequestration has therefore been suggested as a natural climate solution. In this Review, we examine the potential for BCEs to act as carbon sinks and the opportunities to protect or restore ecosystems for this function. Globally, BCEs are calculated to store >30,000 Tg C across ~185 million ha, with their conservation potentially avoiding emissions of 304 (141–466) Tg carbon dioxide equivalent (CO2e) per year. Potential BCE restoration has been estimated in the range of 0.2–3.2 million ha for tidal marshes, 8.3–25.4 million ha for seagrasses and 9–13 million ha for mangroves, which could draw down an additional 841 (621–1,064) Tg CO2e per year by 2030, collectively amounting to ~3% of global emissions (based on 2019 and 2020 global annual fossil fuel emissions). Mangrove protection and/or restoration could provide the greatest carbon-related benefits, but better understanding of other BCEs is needed. BCE destruction is unlikely to stop fully, and not all losses can be restored. However, engineering and planning for coastal protection offer opportunities for protection and restoration, especially through valuing co-benefits. BCE prioritization is potentially a cost-effective and scalable natural climate solution, but there are still barriers to overcome before blue carbon project adoption will become widespread. Mangroves, tidal marshes and seagrass meadows have historically been lost or degraded, threatening their ability to store carbon and provide ecosystem services. This Review details the global potential of blue carbon ecosystem protection and restoration in climate change mitigation, through carbon sequestration and co-benefit production.

143 citations


Journal ArticleDOI
21 Apr 2021-Nature
TL;DR: In this article, the mean annual effective water table depth (WTDe; that is, the average depth of the aerated peat layer) overcomes all other ecosystem and management-related controls on greenhouse gas fluxes.
Abstract: Global peatlands store more carbon than is naturally present in the atmosphere1,2. However, many peatlands are under pressure from drainage-based agriculture, plantation development and fire, with the equivalent of around 3 per cent of all anthropogenic greenhouse gases emitted from drained peatland3–5. Efforts to curb such emissions are intensifying through the conservation of undrained peatlands and re-wetting of drained systems6. Here we report eddy covariance data for carbon dioxide from 16 locations and static chamber measurements for methane from 41 locations in the UK and Ireland. We combine these with published data from sites across all major peatland biomes. We find that the mean annual effective water table depth (WTDe; that is, the average depth of the aerated peat layer) overrides all other ecosystem- and management-related controls on greenhouse gas fluxes. We estimate that every 10 centimetres of reduction in WTDe could reduce the net warming impact of CO2 and CH4 emissions (100-year global warming potentials) by the equivalent of at least 3 tonnes of CO2 per hectare per year, until WTDe is less than 30 centimetres. Raising water levels further would continue to have a net cooling effect until WTDe is within 10 centimetres of the surface. Our results suggest that greenhouse gas emissions from peatlands drained for agriculture could be greatly reduced without necessarily halting their productive use. Halving WTDe in all drained agricultural peatlands, for example, could reduce emissions by the equivalent of over 1 per cent of global anthropogenic emissions. Halving average drainage depths in agricultural peatlands could reduce greenhouse gas emissions by the equivalent of 1 per cent of all anthropogenic emissions.

101 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed spatially explicit estimates of carbon stock changes of live woody biomass from 2000 to 2019 using measurements from ground, air, and space, and showed that live biomass has removed 4.9 to 5.5 PgC year−1 from the atmosphere, offsetting 4.6 ± 0.1 pgC of gross emissions from disturbances and adding substantially (0.23 to 0.88 pgc year− 1) to the global carbon stocks.
Abstract: Live woody vegetation is the largest reservoir of biomass carbon, with its restoration considered one of the most effective natural climate solutions. However, terrestrial carbon fluxes remain the largest uncertainty in the global carbon cycle. Here, we develop spatially explicit estimates of carbon stock changes of live woody biomass from 2000 to 2019 using measurements from ground, air, and space. We show that live biomass has removed 4.9 to 5.5 PgC year−1 from the atmosphere, offsetting 4.6 ± 0.1 PgC year−1 of gross emissions from disturbances and adding substantially (0.23 to 0.88 PgC year−1) to the global carbon stocks. Gross emissions and removals in the tropics were four times larger than temperate and boreal ecosystems combined. Although live biomass is responsible for more than 80% of gross terrestrial fluxes, soil, dead organic matter, and lateral transport may play important roles in terrestrial carbon sink.

89 citations


Journal ArticleDOI
01 Feb 2021
TL;DR: In this article, a review of recent advances in electrocatalysis enabled CO2 cycle including the electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids are highlighted.
Abstract: As one of the most important biogeochemical cycles, the carbon dioxide (CO2) cycle between atmosphere and biosphere has a profound impact on the life on earth Therefore, the search for sustainable solutions to normalize the currently unbalanced carbon dioxide cycle is the central research topic of many scientific disciplines The green and sustainable electrocatalysis offers a very promising answer to currently unbalanced carbon dioxide cycle In this review, recent advances in electrocatalysis enabled CO2 cycle including the electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids are highlighted

70 citations


Journal ArticleDOI
TL;DR: The observed in situ decline in subsoil carbon stocks with warming is now definitive evidence of a positive soil carbon-climate feedback, which could not be concluded based on increases in CO2 effluxes alone.
Abstract: Subsoils below 20 cm are an important reservoir in the global carbon cycle, but little is known about their vulnerability under climate change. We measured a statistically significant loss of subsoil carbon (-33 ± 11%) in warmed plots of a conifer forest after 4.5 years of whole-soil warming (4°C). The loss of subsoil carbon was primarily from unprotected particulate organic matter. Warming also stimulated a sustained 30 ± 4% increase in soil CO2 efflux due to increased CO2 production through the whole-soil profile. The observed in situ decline in subsoil carbon stocks with warming is now definitive evidence of a positive soil carbon-climate feedback, which could not be concluded based on increases in CO2 effluxes alone. The high sensitivity of subsoil carbon and the different responses of soil organic matter pools suggest that models must represent these heterogeneous soil dynamics to accurately predict future feedbacks to warming.

66 citations


Journal ArticleDOI
TL;DR: Based on large-scale soil radiocarbon (∆14 C) measurements on the Tibetan Plateau, this article found that plant carbon input was the major contributor to topsoil carbon destabilisation.
Abstract: Elucidating the processes underlying the persistence of soil organic matter (SOM) is a prerequisite for projecting soil carbon feedback to climate change. However, the potential role of plant carbon input in regulating the multi-layer SOM preservation over broad geographic scales remains unclear. Based on large-scale soil radiocarbon (∆14 C) measurements on the Tibetan Plateau, we found that plant carbon input was the major contributor to topsoil carbon destabilisation despite the significant associations of topsoil ∆14 C with climatic and mineral variables as well as SOM chemical composition. By contrast, mineral protection by iron-aluminium oxides and cations became more important in preserving SOM in deep soils. These regional observations were confirmed by a global synthesis derived from the International Soil Radiocarbon Database (ISRaD). Our findings illustrate different effects of plant carbon input on SOM persistence across soil layers, providing new insights for models to better predict multi-layer soil carbon dynamics under changing environments.

62 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reconstructed total alkalinity (TA), dissolved inorganic carbon (DIC), CO2 partial pressure (pCO2sea), sea-air CO2 flux, pH, and aragonite saturation state (Ωarg) for the global ocean based on measurements of CO2sea and TA.
Abstract: Ocean acidification is likely to impact marine ecosystems and human societies adversely and is a carbon cycle issue of great concern. Projecting the degree of ocean acidification and the carbon-climate feedback will require understanding the current status, variability, and trends of ocean inorganic carbon system variables and the ocean carbon sink. With this goal in mind, we reconstructed total alkalinity (TA), dissolved inorganic carbon (DIC), CO2 partial pressure (pCO2sea), sea–air CO2 flux, pH, and aragonite saturation state (Ωarg) for the global ocean based on measurements of pCO2sea and TA. We used a multiple linear regression approach to derive relationships to explain TA and DIC and obtained monthly 1° × 1° gridded values of TA and DIC for the period 1993–2018. These data were converted to pCO2sea, pH, and Ωarg, and monthly sea-air CO2 fluxes were obtained in combination with atmospheric CO2. Mean annual sea–air CO2 flux and its rate of change were estimated to be − 2.0 ± 0.5 PgC year−1 and − 0.3 (PgC year−1) decade−1, respectively. Our analysis revealed that oceanic CO2 uptake decreased during the 1990s and has been increasing since 2000. Our estimate of the globally averaged rate of pH change, − 0.0181 ± 0.0001 decade−1, was consistent with that expected from the trend of atmospheric CO2 growth. However, rates of decline of pH were relatively slow in the Southern Ocean (− 0.0165 ± 0.0001·decade−1) and in the western equatorial Pacific (− 0.0148 ± 0.0002·decade−1). Our estimate of the globally averaged rate of pH change can be used to verify Indicator 14.3.1 of Sustainable Development Goals.

Journal ArticleDOI
TL;DR: How a variety of processes influence aquatic acid-base properties in estuarine waters is reviewed, including river-ocean mixing, upwelling, air-water gas exchange, biological production and subsequent respiration, anaerobic resppiration, calcium carbonate (CaCO3) dissolution, and benthic inputs.
Abstract: Oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO2-induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid-base buffer capacity. In this article, we review how a variety of processes influence aquatic acid-base properties in estuarine waters, including coastal upwelling, river-ocean mixing, air-water gas exchange, biological production and subsequent aerobic and anaerobic respiration, calcium carbonate (CaCO3) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO2 (pCO2), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries-Chesapeake Bay, the Salish Sea, and Prince William Sound-are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers.

Journal ArticleDOI
TL;DR: In this paper, a global compilation of high-frequency CO2 measurements was used to demonstrate that nocturnal CO2 emissions are on average 27% (0.9 gCm−m−2 d−1) greater than those estimated from diurnal concentrations alone.
Abstract: Carbon dioxide (CO2) emissions to the atmosphere from running waters are estimated to be four times greater than the total carbon (C) flux to the oceans. However, these fluxes remain poorly constrained because of substantial spatial and temporal variability in dissolved CO2 concentrations. Using a global compilation of high-frequency CO2 measurements, we demonstrate that nocturnal CO2 emissions are on average 27% (0.9 gC m−2 d−1) greater than those estimated from diurnal concentrations alone. Constraints on light availability due to canopy shading or water colour are the principal controls on observed diel (24 hour) variation, suggesting this nocturnal increase arises from daytime fixation of CO2 by photosynthesis. Because current global estimates of CO2 emissions to the atmosphere from running waters (0.65–1.8 PgC yr−1) rely primarily on discrete measurements of dissolved CO2 obtained during the day, they substantially underestimate the magnitude of this flux. Accounting for night-time CO2 emissions may elevate global estimates from running waters to the atmosphere by 0.20–0.55 PgC yr−1. Failing to account for emission differences between day and night will lead to an underestimate of global CO2 emissions from rivers by up to 0.55 PgC yr–1, according to analyses of high-frequency CO2 measurements.

Journal ArticleDOI
TL;DR: In this paper, the global carbon emissions from reservoirs were assessed by apportioning CO2 and methane emissions to water surfaces and drawdown areas using published areal emission rates, showing that reservoirs emit more carbon than they bury, challenging the current understanding that reservoirs are net carbon sinks.
Abstract: Reservoir drawdown areas—where sediment is exposed to the atmosphere due to water-level fluctuations—are hotspots for carbon dioxide (CO2) emissions. However, the global extent of drawdown areas is unknown, precluding an accurate assessment of the carbon budget of reservoirs. Here we show, on the basis of satellite observations of 6,794 reservoirs between 1985 and 2015, that 15% of the global reservoir area was dry. Exposure of drawdown areas was most pronounced in reservoirs close to the tropics and shows a complex dependence on climatic (precipitation, temperature) and anthropogenic (water use) drivers. We re-assessed the global carbon emissions from reservoirs by apportioning CO2 and methane emissions to water surfaces and drawdown areas using published areal emission rates. The new estimate assigns 26.2 (15–40) (95% confidence interval) TgCO2-C yr−1 to drawdown areas, and increases current global CO2 emissions from reservoirs by 53% (60.3 (43.2–79.5) TgCO2-C yr−1). Taking into account drawdown areas, the ratio between carbon emissions and carbon burial in sediments is 2.02 (1.04–4.26). This suggests that reservoirs emit more carbon than they bury, challenging the current understanding that reservoirs are net carbon sinks. Thus, consideration of drawdown areas overturns our conception of the role of reservoirs in the carbon cycle. Globally, reservoirs are net emitters of carbon when drawdown areas are taken into account, according to an analysis of satellite observations of reservoir surface area.


Journal ArticleDOI
TL;DR: In this article, the authors found that local carbon storage in the organic topsoil was 33% lower in the presence of a group of closely related species of ectomycorrhizal fungi - Cortinarius acutus s.l.
Abstract: Boreal forest soils are important global carbon sinks, with significant storage in the organic topsoil. Decomposition of these stocks requires oxidative enzymes, uniquely produced by fungi. Across Swedish boreal forests, we found that local carbon storage in the organic topsoil was 33% lower in the presence of a group of closely related species of ectomycorrhizal fungi - Cortinarius acutus s.l.. This observation challenges the prevailing view that ectomycorrhizal fungi generally act to increase carbon storage in soils but supports the idea that certain ectomycorrhizal fungi can complement free-living decomposers, maintaining organic matter turnover, nutrient cycling and tree productivity under nutrient-poor conditions. The indication that a narrow group of fungi may exert a major influence on carbon cycling questions the prevailing dogma of functional redundancy among microbial decomposers. Cortinarius acutus s.l. responds negatively to stand-replacing disturbance, and associated population declines are likely to increase soil carbon sequestration while impeding long-term nutrient cycling.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new comprehensive approach to carbon accounting based on the whole carbon cycle, covering both stocks and flows, and linking changes due to human activities with responses in the biosphere and atmosphere.

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the influence of carbon cycling within soils as a primary control on exported biomarker ages and reveal a broad distribution of soil organic carbon reactivities, and find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation.
Abstract: Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon-leaf-wax lipids and lignin phenols-from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change-induced perturbations of soil OC turnover and stocks.

Journal ArticleDOI
TL;DR: The current state of knowledge surrounding tropical peatlands and their biophysical characteristics, distribution and carbon stock, role in the global climate, the impacts of direct human disturbances on carbon accumulation rates and greenhouse gas emissions are displayed.
Abstract: Peatlands are carbon-rich ecosystems that cover 185-423 million hectares (Mha) of the earth's surface. The majority of the world's peatlands are in temperate and boreal zones, whereas tropical ones cover only a total area of 90-170 Mha. However, there are still considerable uncertainties in C stock estimates as well as a lack of information about depth, bulk density and carbon accumulation rates. The incomplete data are notable especially in tropical peatlands located in South America, which are estimated to have the largest area of peatlands in the tropical zone. This paper displays the current state of knowledge surrounding tropical peatlands and their biophysical characteristics, distribution and carbon stock, role in the global climate, the impacts of direct human disturbances on carbon accumulation rates and greenhouse gas (GHG) emissions. Based on the new peat extension and depth data, we estimate that tropical peatlands store 152-288 Gt C, or about half of the global peatland emitted carbon. We discuss the knowledge gaps in research on distribution, depth, C stock and fluxes in these ecosystems which play an important role in the global carbon cycle and risk releasing large quantities of GHGs into the atmosphere (CO2 and CH4 ) when subjected to anthropogenic interferences (e.g., drainage and deforestation). Recent studies show that although climate change has an impact on the carbon fluxes of these ecosystems, the direct anthropogenic disturbance may play a greater role. The future of these systems as carbon sinks will depend on advancing current scientific knowledge and incorporating local understanding to support policies geared toward managing and conserving peatlands in vulnerable regions, such as the Amazon where recent records show increased forest fires and deforestation.

Journal ArticleDOI
06 Aug 2021
TL;DR: In this article, the authors synthesize data from 612 sites across 51 countries to estimate global carbon stocks in paddy soils and determine the main factors affecting paddy soil carbon storage.
Abstract: Rice paddies account for ~9% or the world’s cropland area and are characterized by environmental conditions promoting soil organic carbon storage, methane emissions and to a lesser extent nitrous oxide emissions. Here, we synthesize data from 612 sites across 51 countries to estimate global carbon stocks in paddy soils and determine the main factors affecting paddy soil carbon storage. Paddy soils (0–100 cm) contain 18 Pg carbon worldwide. Paddy soil carbon stocks decrease with increasing mean annual temperature and soil pH, whereas mean annual precipitation and clay content had minor impacts. Meta-analysis shows that paddy soil carbon stocks can be increased through several management practices. However, greenhouse gas mitigation through paddy soil carbon storage is generally outweighed by increases in methane and nitrous oxide emissions. Our results emphasize the key role of paddies in the global carbon cycle, and the importance of paddy management in minimizing anthropogenic greenhouse gas emissions. Rice paddies represent approximately 1.2% of the global soil organic carbon pool and contain 20% more soil organic carbon per hectare than croplands on average, according to a global synthesis.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors presented seasonal and annual fluxes of CO2 emissions from streams, rivers, lakes, and reservoirs throughout China and quantify their changes over the past three decades.
Abstract: Carbon dioxide (CO2) evasion from inland waters is an important component of the global carbon cycle. However, it remains unknown how global change affects CO2 emissions over longer time scales. Here, we present seasonal and annual fluxes of CO2 emissions from streams, rivers, lakes, and reservoirs throughout China and quantify their changes over the past three decades. We found that the CO2 emissions declined from 138 ± 31 Tg C yr−1 in the 1980s to 98 ± 19 Tg C yr−1 in the 2010s. Our results suggest that this unexpected decrease was driven by a combination of environmental alterations, including massive conversion of free-flowing rivers to reservoirs and widespread implementation of reforestation programs. Meanwhile, we found increasing CO2 emissions from the Tibetan Plateau inland waters, likely attributable to increased terrestrial deliveries of organic carbon and expanded surface area due to climate change. We suggest that the CO2 emissions from Chinese inland waters have greatly offset the terrestrial carbon sink and are therefore a key component of China’s carbon budget. Inland waters emit greenhouse gases, but robust estimations are hampered by a dearth of spatio-temporally resolved measurements. Here the authors present annual fluxes of CO2 from Chinese inland waters over the past several decades, showing that emission fluxes have significantly declined since the 80s.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a continuous pCO2 record across the PTME reconstructed from high-resolution δ13C of C3 plants from southwestern China, which showed that atmospheric p CO2 increased by a factor of six during the Permian-Triassic mass extinction.
Abstract: The Permian–Triassic mass extinction was marked by a massive release of carbon into the ocean-atmosphere system, evidenced by a sharp negative carbon isotope excursion. Large carbon emissions would have increased atmospheric pCO2 and caused global warming. However, the magnitude of pCO2 changes during the PTME has not yet been estimated. Here, we present a continuous pCO2 record across the PTME reconstructed from high-resolution δ13C of C3 plants from southwestern China. We show that pCO2 increased from 426 +133/−96 ppmv in the latest Permian to 2507 +4764/−1193 ppmv at the PTME within about 75 kyr, and that the reconstructed pCO2 significantly correlates with sea surface temperatures. Mass balance modelling suggests that volcanic CO2 is probably not the only trigger of the carbon cycle perturbation, and that large quantities of 13C-depleted carbon emission from organic matter and methane were likely required during complex interactions with the Siberian Traps volcanism. The Permian–Triassic mass extinction was accompanied by a massive release of carbon into the ocean-atmosphere system, but the magnitude of change is not well known. Here, the authors present a new record of C3 plants from southwestern China which shows that atmospheric pCO2 increased by a factor of six during this event.

Journal ArticleDOI
TL;DR: In this paper, stable isotope probing (SIP) targeted metagenomics was used to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics.
Abstract: Winter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures). We used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated under sub-freezing anoxic conditions with H218O or natural abundance water for 184 and 370 days. We sequenced 23 SIP-metagenomes and measured carbon dioxide (CO2) efflux throughout the experiment. We identified 46 bacterial populations (spanning 9 phyla) and 243 viral populations that actively took up 18O in soil and respired CO2 throughout the incubation. Active bacterial populations represented only a small portion of the detected microbial community and were capable of fermentation and organic matter degradation. In contrast, active viral populations represented a large portion of the detected viral community and one third were linked to active bacterial populations. We identified 86 auxiliary metabolic genes and other environmentally relevant genes. The majority of these genes were carried by active viral populations and had diverse functions such as carbon utilization and scavenging that could provide their host with a fitness advantage for utilizing much-needed carbon sources or acquiring essential nutrients. Overall, there was a stark difference in the identity and function of the active bacterial and viral community compared to the unlabeled community that would have been overlooked with a non-targeted standard metagenomic analysis. Our results illustrate that substantial active virus-host interactions occur in sub-freezing anoxic conditions and highlight viruses as a major community-structuring agent that likely modulates carbon loss in peat soils during winter, which may be pivotal for understanding the future fate of arctic soils' vast carbon stocks.

Journal ArticleDOI
TL;DR: In this article, the authors presented a comprehensive dataset including 267 shotgun metagenomes from 41 stratified lakes and ponds mainly located in the boreal and subarctic regions, but also including one tropical reservoir and one temperate lake.
Abstract: Stratified lakes and ponds featuring steep oxygen gradients are significant net sources of greenhouse gases and hotspots in the carbon cycle. Despite their significant biogeochemical roles, the microbial communities, especially in the oxygen depleted compartments, are poorly known. Here, we present a comprehensive dataset including 267 shotgun metagenomes from 41 stratified lakes and ponds mainly located in the boreal and subarctic regions, but also including one tropical reservoir and one temperate lake. For most lakes and ponds, the data includes a vertical sample set spanning from the oxic surface to the anoxic bottom layer. The majority of the samples were collected during the open water period, but also a total of 29 samples were collected from under the ice. In addition to the metagenomic sequences, the dataset includes environmental variables for the samples, such as oxygen, nutrient and organic carbon concentrations. The dataset is ideal for further exploring the microbial taxonomic and functional diversity in freshwater environments and potential climate change impacts on the functioning of these ecosystems.

Journal ArticleDOI
TL;DR: In this paper, the Global Forest Carbon Database (ForC) is used to provide a macroscopic overview of carbon cycling in the world's forests, giving special attention to stand age-related variation.
Abstract: Forests are major components of the global carbon (C) cycle and thereby strongly influence atmospheric carbon dioxide (CO2) and climate. However, efforts to incorporate forests into climate models and CO2 accounting frameworks have been constrained by a lack of accessible, global-scale synthesis on how C cycling varies across forest types and stand ages. Here, we draw from the Global Forest Carbon Database, ForC, to provide a macroscopic overview of C cycling in the world’s forests, giving special attention to stand age-related variation. Specifically, we use 11 923 ForC records for 34 C cycle variables from 865 geographic locations to characterize ensemble C budgets for four broad forest types—tropical broadleaf evergreen, temperate broadleaf, temperate conifer, and boreal. We calculate means and standard deviations for both mature and regrowth (age < 100 years) forests and quantify trends with stand age in regrowth forests for all variables with sufficient data. C cycling rates generally decreased from tropical to temperate to boreal in both mature and regrowth forests, whereas C stocks showed less directional variation. Mature forest net ecosystem production did not differ significantly among biomes. The majority of flux variables, together with most live biomass pools, increased significantly with the logarithm of stand age. As climate change accelerates, understanding and managing the carbon dynamics of forests is critical to forecasting, mitigation, and adaptation. This comprehensive and synthetic global overview of C stocks and fluxes across biomes and stand ages contributes to these efforts.


Journal ArticleDOI
TL;DR: In this article, the authors measured emissions from nine ponds and seven ditches over a full year and found that the concentrations of GHGs were positively related to nutrient status (C, N, P), and ponds GHG concentrations were highest in smallest waterbodies.
Abstract: Inland waters play an active role in the global carbon cycle and emit large volumes of the greenhouse gases (GHGs) methane (CH ) and carbon dioxide (CO ). A considerable body of research has improved emissions estimates from lakes, reservoirs, and rivers but recent attention has been drawn to the importance of small, artificial waterbodies as poorly quantified but potentially important emission hotspots. Of particular interest are emissions from drainage ditches and constructed ponds. These waterbody types are prevalent in many landscapes and their cumulative surface areas can be substantial. Furthermore, GHG emissions from constructed waterbodies are anthropogenic in origin and form part of national emissions reporting, whereas emissions from natural water bodies do not (according to Intergovernmental Panel on Climate Change guidelines). Here, we present GHG data from two complementary studies covering a range of land uses. In the first, we measured emissions from nine ponds and seven ditches over a full year. Annual emissions varied considerably: 0.1 - 44.3 g CH m yr and -36 - 4421 g CO m yr . In the second, we measured GHG concentrations in 96 ponds and 64 ditches across seven countries, covering subtropical, temperate and sub-arctic biomes. When CH emissions were converted to CO equivalents, 93% of waterbodies were GHG sources. In both studies, GHGs were positively related to nutrient status (C, N, P), and pond GHG concentrations were highest in smallest waterbodies. Ditch and pond emissions were larger per unit area when compared to equivalent natural systems (streams, natural ponds). We show that GHG emissions from natural systems should not be used as proxies for those from artificial waterbodies, and that artificial waterbodies have the potential to make a substantial but largely unquantified contribution to emissions from the Agriculture, Forestry and Other Land Use sector, and the global carbon cycle.

Journal ArticleDOI
TL;DR: In this article, the authors quantified total carbon stocks in soil across various mangrove ecosystems, which is key to understanding the global carbon cycle to reduce greenhouse gas emissions, and estimated mangroves TC at a large scale.
Abstract: Quantifying total carbon (TC) stocks in soil across various mangrove ecosystems is key to understanding the global carbon cycle to reduce greenhouse gas emissions. Estimating mangrove TC at a large...

Journal ArticleDOI
TL;DR: In this article, a robust cyclicity of ~173 thousand years (ka) in both total organic carbon (TOC) and stable carbon isotope (δ13Corg) datasets was investigated to investigate organic carbon burial processes in middle to high latitudes.
Abstract: Earth's climate system is complex and inherently nonlinear, which can induce some extraneous cycles in paleoclimatic proxies at orbital time scales. The paleoenvironmental consequences of these extraneous cycles are debated owing to their complex origin. Here, we compile high-resolution datasets of total organic carbon (TOC) and stable carbon isotope (δ13Corg) datasets to investigate organic carbon burial processes in middle to high latitudes. Our results document a robust cyclicity of ~173 thousand years (ka) in both TOC and δ13Corg The ~173-ka obliquity-related forcing signal was amplified by internal climate feedbacks of the carbon cycle under different geographic and climate conditions, which control a series of sensitive climatic processes. In addition, our new and compiled records from multiple proxies confirm the presence of the obliquity amplitude modulation (AM) cycle during the Mesozoic and Cenozoic and indicate the usefulness of the ~173-ka cycle as geochronometer and for paleoclimatic interpretation.

Journal ArticleDOI
TL;DR: The model suggests that the new U isotope data, whilst also being consistent with plausible carbon emission scenarios and observations of carbon cycle recovery, permit a maximum ~10-fold expansion of anoxia, covering <2% of seafloor area.
Abstract: The Paleocene Eocene Thermal Maximum (PETM) represents a major carbon cycle and climate perturbation that was associated with ocean de-oxygenation, in a qualitatively similar manner to the more extensive Mesozoic Oceanic Anoxic Events. Although indicators of ocean de-oxygenation are common for the PETM, and linked to biotic turnover, the global extent and temporal progression of de-oxygenation is poorly constrained. Here we present carbonate associated uranium isotope data for the PETM. A lack of resolvable perturbation to the U-cycle during the event suggests a limited expansion of seafloor anoxia on a global scale. We use this result, in conjunction with a biogeochemical model, to set an upper limit on the extent of global seafloor de-oxygenation. The model suggests that the new U isotope data, whilst also being consistent with plausible carbon emission scenarios and observations of carbon cycle recovery, permit a maximum ~10-fold expansion of anoxia, covering <2% of seafloor area.