scispace - formally typeset
Search or ask a question
Institution

Amkor Technology

CompanyTempe, Arizona, United States
About: Amkor Technology is a company organization based out in Tempe, Arizona, United States. It is known for research contribution in the topics: Semiconductor package & Substrate (printing). The organization has 1069 authors who have published 1106 publications receiving 26778 citations. The organization is also known as: Amkor & Amkor Technology, Inc..


Papers
More filters
Patent
Torry Mills1
29 Oct 2012
TL;DR: In this article, the authors describe methods and systems for placing an array of solder balls onto a substrate, where the substrate may comprise a contact pad for each of the solder balls and a subset of the contact pads may be coupled via a solder mask opening.
Abstract: Methods and systems for solder shielding of ball grid arrays are disclosed and may include placing an array of solder balls onto a substrate, where the substrate may comprise a contact pad for each of the solder balls and a subset of the contact pads may be coupled via a solder mask opening. A subset of the array of solder balls may be coupled utilizing a solder reflow process and via the solder mask opening. The coupled subset may comprise an outer perimeter of the array. The substrate may comprise an interposer or an integrated circuit die, where the coupled subset shields circuitry from receiving electromagnetic interference. The substrate may comprise a packaging substrate or a printed circuit board (PCB) and the coupled subset may be coupled to a ground plane. The subset of the array of solder balls may be utilized to generate one or more reactive elements.

5 citations

Patent
28 Apr 2015
TL;DR: In this paper, a die-to-die first bond was proposed for a semiconductor device package with a die to interposer wafer first bond, which may include bonding a plurality of semiconductor die comprising electronic devices to an interposition wafer, and applying an underfill material between the die and the interposers wafer.
Abstract: Methods and systems for a semiconductor device package with a die to interposer wafer first bond are disclosed and may include bonding a plurality of semiconductor die comprising electronic devices to an interposer wafer, and applying an underfill material between the die and the interposer wafer. Methods and systems for a semiconductor device package with a die-to-packing substrate first bond are disclosed and may include bonding a first semiconductor die to a packaging substrate, applying an underfill material between the first semiconductor die and the packaging substrate, and bonding one or more additional die to the first semiconductor die. Methods and systems for a semiconductor device package with a die-to-die first bond are disclosed and may include bonding one or more semiconductor die comprising electronic devices to an interposer die.

5 citations

Proceedings ArticleDOI
01 Sep 2018
TL;DR: Present work shows that FO-WLP will also reach automotive reliability requirements and pass high temperature, thermal cycle and temperature-humidity tests, and two-fold redundancy will make an IO failure rate low enough.
Abstract: Fan-out wafer level packaging (FO-WLP) is the fastest growing packaging technology. Besides providing greater number of IOs than could be obtained by fan-in wafer level packaging (WLP) it also offers interesting opportunities for multi-die packaging with minimum package dimensions. Combined inertial sensor is an established category of automotive sensor components. with of two or more MEMS sensor dies for 36 axis motion measurement and an interface circuit die. It is used for electronic chassis stability control (ESC) and for advanced driver assistant systems (ADAS). Currently the sensor is packaged in various standard or proprietary configurations: ceramic cavity packages, pre-molded plastic cavity packages, over-molded SOIC, PBGA. The demand is towards smaller foot print and smaller height, lower cost and better robustness to vibrations. FO-WLP offers some excellent characteristics like small size, compatible cost, vibration robustness and low stress to sensitive MEMS dies. Present work shows that it will also reach automotive reliability requirements and pass high temperature, thermal cycle and temperature-humidity tests. Three fracture mechanism of the solder ball IOs were identified at 2000 thermal cycles. Solder fatigue was no issue and by design changes two other mechanisms can be corrected. Two-fold redundancy will make an IO failure rate low enough. EMI and internal cross-talk protection was found better than with existing devices. Reversible humidity dependence due to moisture absorption by polyimide film was seen and a lay-out change was implemented to overcome it.

5 citations

Patent
08 Aug 2008
TL;DR: In this paper, a window is placed in a pocket of the molding and a snap lid is secured in place, where the window is sandwiched between the mold and the snap lid and held in place.
Abstract: An image sensor package includes a molding having a locking feature. The package further includes a snap lid having a tab, where the tab is attached to the locking feature of the molding. To form the image sensor package, a window is placed in a pocket of the molding. The snap lid is secured in place. Once secured, the snap lid presses against a peripheral region of an exterior surface of the window. The window is sandwiched between the molding and the snap lid and held in place.

5 citations

Patent
27 Dec 2018
TL;DR: In this article, an electronic device structure having a shielding structure includes a substrate with an electronic component electrically connected to the substrate, and a package body encapsulating the electronic component and the conductive spaced-apart pillar structures.
Abstract: An electronic device structure having a shielding structure includes a substrate with an electronic component electrically connected to the substrate. The shielding structure includes conductive spaced-apart pillar structures that have proximate ends connected to the substrate and distal ends spaced apart from the substrate, and that are laterally spaced apart from the first electronic component. In one embodiment, the conductive pillar structures are conductive wires attached at one end to the substrate with an opposing end extending away from the substrate so that the conductive wires are provided generally perpendicular to the substrate. A package body encapsulates the electronic component and the conductive spaced-apart pillar structures. In one embodiment, the shielding structure further includes a shielding layer disposed adjacent the package body, which is electrically connected to the conductive spaced-apart pillar structures. In one embodiment, the electrical connection is made through the package. In another embodiment, the electrical connection is made through the substrate.

5 citations


Authors

Showing all 1070 results

NameH-indexPapersCitations
Thomas P. Glenn481306676
Dong-Hoon Lee4876223162
Joungho Kim405797365
Steven Webster34833322
Young Bae Park332164325
Roy Dale Hollaway28532324
Ronald Patrick Huemoeller26912385
Robert Francis Darveaux23701881
MinJae Lee23993083
Il Kwon Shim21411403
Vincent DiCaprio20271973
Sukianto Rusli19441308
Glenn A. Rinne1934898
Ahmer Syed18551192
David Jon Hiner18541173
Network Information
Related Institutions (5)
Freescale Semiconductor
10.7K papers, 149.1K citations

85% related

TSMC
22.1K papers, 256K citations

83% related

Infineon Technologies
33.9K papers, 230K citations

83% related

LSI Corporation
7.4K papers, 144.4K citations

81% related

Texas Instruments
39.2K papers, 751.8K citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20221
202112
202022
201922
201832
201728