scispace - formally typeset
Search or ask a question
Institution

Amkor Technology

CompanyTempe, Arizona, United States
About: Amkor Technology is a company organization based out in Tempe, Arizona, United States. It is known for research contribution in the topics: Semiconductor package & Substrate (printing). The organization has 1069 authors who have published 1106 publications receiving 26778 citations. The organization is also known as: Amkor & Amkor Technology, Inc..


Papers
More filters
Patent
Yeong Beom Ko1, Jin Han Kim1, Dong Jin Kim1, Do Hyung Kim1, Glenn A. Rinne1 
21 Apr 2015
TL;DR: In this article, the authors present a method for manufacturing a semiconductor device that comprises ordering and performing processing steps in a manner that prevents warpage deformation from occurring to a wafer and/or die due to mismatching thermal coefficients.
Abstract: A semiconductor device structure and a method for manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a method for manufacturing a semiconductor device that comprises ordering and performing processing steps in a manner that prevents warpage deformation from occurring to a wafer and/or die due to mismatching thermal coefficients.

21 citations

Patent
20 Aug 2004
TL;DR: In this paper, a semiconductor package comprising a substrate which includes a leadframe having a plurality of leads which each define opposed top and bottom surfaces and extends in spaced relation to each other such that gaps are defined therebetween.
Abstract: A semiconductor package comprising a substrate which includes a leadframe having a plurality of leads which each define opposed top and bottom surfaces and extends in spaced relation to each other such that gaps are defined therebetween. The substrate further comprises a compound layer which is filled within the gaps defined between the leads. The substrate includes a continuous, generally planar top surface collectively defined by the top surfaces of the leads and compound layer, and a continuous, generally planar bottom surface collectively defined by the bottom surfaces of the leads and compound layer. Attached to the top surface is a semiconductor die which is electrically connected to at least some of the leads.

21 citations

Patent
18 Feb 2004
TL;DR: In this article, the authors describe a semiconductor package comprising a leadframe which includes a die paddle having an opening formed therein, and a plurality of leads, at least one of which is disposed in spaced relation to the die paddle.
Abstract: A semiconductor package comprising a leadframe which includes a die paddle having an opening formed therein. In addition to the die paddle, the leadframe includes a plurality of leads, at least one of which is disposed in spaced relation to the die paddle. The remaining leads are attached to the die paddle and extend therefrom. Electrically connected to the die paddle is the source terminal of a semiconductor die which also includes a gate terminal and a drain terminal. The gate terminal is itself electrically connected to the at least one of the leads disposed in spaced relation to the die paddle. A package body at least partially encapsulates the die paddle, the leads, and the semiconductor die such that portions of the leads and the drain terminal of the semiconductor die are exposed in the package body.

21 citations

Proceedings ArticleDOI
30 Jul 2012
TL;DR: In this article, a fine pitch flip chip assembly technology for large sized flip chip BGA was discussed, and two kinds of assembly method, mass reflow bonding versus thermal compression bonding, for the flip chip bonding was compared for the large FPFCBGA package.
Abstract: Recently, technologies related to Fine Pitch Flip Chip or FPFC have been great achievements for various next generation devices, allowing a significant increase in the number of signal I/O and achieving low form factor packages. Consequently, fine pitch Cu pillar flip chip Chip Scale Package (CSP) with small sized die, with package dimension of less than 16×16mm, is already under high volume production using the Thermal-Compression Bonding with Non-conductive Paste (TCNCP) technology [1–2]. In the case of Flip Chip Ball Grid Array (FCBGA), there is a growing need for FPFC technology with Cu pillar in supporting next generation silicon node. However, there will be a high possibility of yield drop issue in conventional mass-reflow process and potential reliability due to the highly concerned tensile stress between low k die and substrate by CTE mismatch especially at the edge of the die. This can be a critical quality issue for fine pitch devices compared to normal pitch (i.e., 150um) flip chip BGA. Therefore, TCNCP bonding as an alternative should be studied on fine pitch Cu pillar flip chip BGA. This paper will discuss fine pitch flip chip assembly technology for large sized flip chip BGA. Two kinds of assembly method, mass reflow bonding versus thermal compression bonding, for the flip chip bonding will be compared for the large FPFCBGA package. Meanwhile, the advantage of TC bonding with pre-applied underfill process will be described. For robust interconnection between die and substrate for large FPFCBGA, the result of the bonding test will be described with several surface finishes such as ENEPIG, Direct Immersion Gold (DIG), Immersion Tin (IT), and Solder Coating on substrate. Interestingly, one of selected surface finishes has shown excellent reliability test results. Finally, this paper will discuss an effective approach for fine pitch devices from an assembly perspective.

20 citations

Patent
Thomas P. Glenn1, Scott J. Jewler1, David Roman1, J. H. Yee1, D. H. Moon1 
14 Sep 1999
TL;DR: In this paper, the lower surfaces of the die pad and leads are provided with a stepped profile by an etching step that etches partially through the thickness of a peripheral portion of a die pad, and also etches part of portions of the leads.
Abstract: Methods for making packages and leadframes are enclosed. The package includes a die, a die pad, leads, bond wires, and an encapsulant. The lower surfaces of the die pad and leads are provided with a stepped profile by an etching step that etches partially through the thickness of a peripheral portion of the die pad, and also etches partially through the thickness of portions of the leads. Encapsulant material is applied by molding or liquid encapsulation techniques. The encapsulant material fills in beneath the recessed, substantially horizontal surfaces of the die pad and leads formed by the above-described partial etching step, and thereby prevents the die pad and leads from being pulled vertically from the package body. Other surface of the die pad and leads are not covered during the encapsulation step, but rather remain exposed at the lower surface of the package for connecting the package externally. After encapsulation, the die pad and leads are severed from the leadframe, and a completed package is cut from the leadframe. Packages may be cut from the leadframe with a punch or saw. A portion of the severed leads may be bent upwards at an oblique angle to facilitate connection of a solder interconnection to the package. The packages may be made one at a time, or a plurality of packages may be made simultaneously.

20 citations


Authors

Showing all 1070 results

NameH-indexPapersCitations
Thomas P. Glenn481306676
Dong-Hoon Lee4876223162
Joungho Kim405797365
Steven Webster34833322
Young Bae Park332164325
Roy Dale Hollaway28532324
Ronald Patrick Huemoeller26912385
Robert Francis Darveaux23701881
MinJae Lee23993083
Il Kwon Shim21411403
Vincent DiCaprio20271973
Sukianto Rusli19441308
Glenn A. Rinne1934898
Ahmer Syed18551192
David Jon Hiner18541173
Network Information
Related Institutions (5)
Freescale Semiconductor
10.7K papers, 149.1K citations

85% related

TSMC
22.1K papers, 256K citations

83% related

Infineon Technologies
33.9K papers, 230K citations

83% related

LSI Corporation
7.4K papers, 144.4K citations

81% related

Texas Instruments
39.2K papers, 751.8K citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20221
202112
202022
201922
201832
201728