scispace - formally typeset
Search or ask a question
Institution

United States Department of Energy

GovernmentWashington D.C., District of Columbia, United States
About: United States Department of Energy is a government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Catalysis & Coal. The organization has 13656 authors who have published 14177 publications receiving 556962 citations. The organization is also known as: DOE & Department of Energy.
Topics: Catalysis, Coal, Combustion, Adsorption, Hydrogen


Papers
More filters
Journal ArticleDOI
21 Aug 2015-Science
TL;DR: It is established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome, and selection from the available microbial communities to sculpt the root microbiome.
Abstract: Immune systems distinguish “self” from “nonself” to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.

797 citations

Journal ArticleDOI
John L. Bowman1, Takayuki Kohchi2, Katsuyuki T. Yamato3, Jerry Jenkins4, Shengqiang Shu4, Kimitsune Ishizaki5, Shohei Yamaoka2, Ryuichi Nishihama2, Yasukazu Nakamura6, Frédéric Berger7, Catherine Adam4, Shiori S Aki8, Felix Althoff9, Takashi Araki2, Mario A. Arteaga-Vazquez10, Sureshkumar Balasubrmanian1, Kerrie Barry4, Diane Bauer4, Christian R. Boehm11, Liam N. Briginshaw1, Juan Caballero-Pérez12, Bruno Catarino13, Feng Chen14, Shota Chiyoda2, Mansi Chovatia4, Kevin M. Davies15, Mihails Delmans11, Taku Demura8, Tom Dierschke9, Tom Dierschke1, Liam Dolan13, Ana E. Dorantes-Acosta10, D. Magnus Eklund1, D. Magnus Eklund16, Stevie N. Florent1, Eduardo Flores-Sandoval1, Asao Fujiyama6, Hideya Fukuzawa2, Bence Galik, Daniel Grimanelli17, Jane Grimwood4, Ueli Grossniklaus18, Takahiro Hamada19, Jim Haseloff11, Alexander J. Hetherington13, Asuka Higo2, Yuki Hirakawa1, Yuki Hirakawa20, Hope Hundley4, Yoko Ikeda21, Keisuke Inoue2, Shin-ichiro Inoue20, Sakiko Ishida2, Qidong Jia14, Mitsuru Kakita20, Takehiko Kanazawa22, Takehiko Kanazawa19, Yosuke Kawai23, Tomokazu Kawashima24, Tomokazu Kawashima25, Megan Kennedy4, Keita Kinose2, Toshinori Kinoshita20, Yuji Kohara6, Eri Koide2, Kenji Komatsu26, Sarah Kopischke9, Minoru Kubo8, Junko Kyozuka23, Ulf Lagercrantz16, Shih-Shun Lin27, Erika Lindquist4, Anna Lipzen4, Chia-Wei Lu27, Efraín De Luna, Robert A. Martienssen28, Naoki Minamino22, Naoki Minamino19, Masaharu Mizutani5, Miya Mizutani2, Nobuyoshi Mochizuki2, Isabel Monte29, Rebecca A. Mosher30, Hideki Nagasaki, Hirofumi Nakagami31, Satoshi Naramoto23, Kazuhiko Nishitani23, Misato Ohtani8, Takashi Okamoto32, Masaki Okumura20, Jeremy Phillips4, Bernardo Pollak11, Anke Reinders33, Moritz Rövekamp18, Ryosuke Sano8, Shinichiro Sawa34, Marc W. Schmid18, Makoto Shirakawa2, Roberto Solano29, Alexander Spunde4, Noriyuki Suetsugu2, Sumio Sugano19, Akifumi Sugiyama2, Rui Sun2, Yutaka Suzuki19, Mizuki Takenaka35, Daisuke Takezawa36, Hirokazu Tomogane2, Masayuki Tsuzuki19, Takashi Ueda22, Masaaki Umeda8, John M. Ward33, Yuichiro Watanabe19, Kazufumi Yazaki2, Ryusuke Yokoyama23, Yoshihiro Yoshitake2, Izumi Yotsui, Sabine Zachgo9, Jeremy Schmutz4 
05 Oct 2017-Cell
TL;DR: Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant.

774 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized numerical values of particle and gas dry deposition velocities and recommended a model developed by Sehmel and Hodgson for numerical prediction purposes, which was used for particle prediction purposes.

771 citations

Journal ArticleDOI
TL;DR: An examination of in vivo metabolism has detected the hallmarks of milk oligosaccharide utilization via the central fermentative pathway using metabolomic and proteomic approaches and conservation of gene clusters in multiple isolates corroborates the genomic mechanism underlying milk utilization for this infant-associated phylotype.
Abstract: Following birth, the breast-fed infant gastrointestinal tract is rapidly colonized by a microbial consortium often dominated by bifidobacteria. Accordingly, the complete genome sequence of Bifidobacterium longum subsp. infantis ATCC15697 reflects a competitive nutrient-utilization strategy targeting milk-borne molecules which lack a nutritive value to the neonate. Several chromosomal loci reflect potential adaptation to the infant host including a 43 kbp cluster encoding catabolic genes, extracellular solute binding proteins and permeases predicted to be active on milk oligosaccharides. An examination of in vivo metabolism has detected the hallmarks of milk oligosaccharide utilization via the central fermentative pathway using metabolomic and proteomic approaches. Finally, conservation of gene clusters in multiple isolates corroborates the genomic mechanism underlying milk utilization for this infant-associated phylotype.

765 citations

Journal ArticleDOI
Adam M. Session1, Adam M. Session2, Yoshinobu Uno3, Taejoon Kwon4, Taejoon Kwon5, Jarrod Chapman2, Atsushi Toyoda6, Shuji Takahashi7, Akimasa Fukui8, Akira Hikosaka7, Atsushi Suzuki7, Mariko Kondo9, Simon J. van Heeringen10, Ian K. Quigley11, Sven Heinz11, Hajime Ogino12, Haruki Ochi13, Uffe Hellsten2, Jessica B. Lyons1, Oleg Simakov14, Nicholas H. Putnam, Jonathan C. Stites, Yoko Kuroki, Toshiaki Tanaka15, Tatsuo Michiue9, Minoru Watanabe16, Ozren Bogdanovic17, Ryan Lister17, Georgios Georgiou10, Sarita S. Paranjpe10, Ila van Kruijsbergen10, Shengquiang Shu2, Joseph W. Carlson2, Tsutomu Kinoshita18, Yuko Ohta19, Shuuji Mawaribuchi20, Jerry Jenkins2, Jane Grimwood2, Jeremy Schmutz2, Therese Mitros1, Sahar V. Mozaffari21, Yutaka Suzuki9, Yoshikazu Haramoto22, Takamasa S. Yamamoto23, Chiyo Takagi23, Rebecca Heald1, Kelly E. Miller1, Christian D. Haudenschild24, Jacob O. Kitzman25, Takuya Nakayama26, Yumi Izutsu27, Jacques Robert28, Joshua D. Fortriede29, Kevin A. Burns, Vaneet Lotay30, Kamran Karimi30, Yuuri Yasuoka14, Darwin S. Dichmann1, Martin F. Flajnik19, Douglas W. Houston31, Jay Shendure25, Louis DuPasquier32, Peter D. Vize30, Aaron M. Zorn29, Michihiko Ito20, Edward M. Marcotte4, John B. Wallingford4, Yuzuru Ito22, Makoto Asashima22, Naoto Ueno23, Naoto Ueno33, Yoichi Matsuda3, Gert Jan C. Veenstra10, Asao Fujiyama6, Asao Fujiyama33, Asao Fujiyama34, Richard M. Harland1, Masanori Taira9, Daniel S. Rokhsar1, Daniel S. Rokhsar2, Daniel S. Rokhsar14 
20 Oct 2016-Nature
TL;DR: The Xenopus laevis genome is sequenced and it is estimated that the two diploid progenitor species diverged around 34 million years ago and combined to form an allotetraploid around 17–18 Ma, where more than 56% of all genes were retained in two homoeologous copies.
Abstract: To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of 'fossil' transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.

761 citations


Authors

Showing all 13660 results

NameH-indexPapersCitations
Martin White1962038232387
Paul G. Richardson1831533155912
Jie Zhang1784857221720
Krzysztof Matyjaszewski1691431128585
Yang Gao1682047146301
David Eisenberg156697112460
Marvin Johnson1491827119520
Carlos Escobar148118495346
Joshua A. Frieman144609109562
Paul Jackson141137293464
Greg Landsberg1411709109814
J. Conway1401692105213
Pushpalatha C Bhat1391587105044
Julian Borrill139387102906
Cecilia Elena Gerber1381727106984
Network Information
Related Institutions (5)
Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

ETH Zurich
122.4K papers, 5.1M citations

88% related

Texas A&M University
164.3K papers, 5.7M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202223
2021633
2020601
2019654
2018598