scispace - formally typeset
Search or ask a question
Institution

United States Department of Energy

GovernmentWashington D.C., District of Columbia, United States
About: United States Department of Energy is a government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Catalysis & Coal. The organization has 13656 authors who have published 14177 publications receiving 556962 citations. The organization is also known as: DOE & Department of Energy.
Topics: Catalysis, Coal, Combustion, Adsorption, Hydrogen


Papers
More filters
Journal ArticleDOI
TL;DR: Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.
Abstract: Two major energy-related problems confront the world in the next 50 years. First, increased worldwide competition for gradually depleting fossil fuel reserves (derived from past photosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.

1,651 citations

Journal ArticleDOI
12 Feb 2009-Nature
TL;DR: In this paper, the results of chromatin immunoprecipitation with the enhancer-associated protein p300 followed by massively parallel sequencing, and map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain and limb tissue.
Abstract: A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover because they are scattered among the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here we present the results of chromatin immunoprecipitation with the enhancer-associated protein p300 followed by massively parallel sequencing, and map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases demonstrated reproducible enhancer activity in the tissues that were predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities, and suggest that such data sets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

1,641 citations

Journal ArticleDOI
John P. Vogel1, David F. Garvin2, Todd C. Mockler2, Jeremy Schmutz, Daniel S. Rokhsar3, Michael W. Bevan4, Kerrie Barry5, Susan Lucas5, Miranda Harmon-Smith5, Kathleen Lail5, Hope Tice5, Jane Grimwood, Neil McKenzie4, Naxin Huo6, Yong Q. Gu6, Gerard R. Lazo6, Olin D. Anderson6, Frank M. You7, Ming-Cheng Luo7, Jan Dvorak7, Jonathan M. Wright4, Melanie Febrer4, Dominika Idziak8, Robert Hasterok8, Erika Lindquist5, Mei Wang5, Samuel E. Fox2, Henry D. Priest2, Sergei A. Filichkin2, Scott A. Givan2, Douglas W. Bryant2, Jeff H. Chang2, Haiyan Wu9, Wei Wu10, An-Ping Hsia10, Patrick S. Schnable9, Anantharaman Kalyanaraman11, Brad Barbazuk12, Todd P. Michael, Samuel P. Hazen13, Jennifer N. Bragg6, Debbie Laudencia-Chingcuanco6, Yiqun Weng14, Georg Haberer, Manuel Spannagl, Klaus F. X. Mayer, Thomas Rattei15, Therese Mitros3, Sang-Jik Lee16, Jocelyn K. C. Rose16, Lukas A. Mueller16, Thomas L. York16, Thomas Wicker17, Jan P. Buchmann17, Jaakko Tanskanen18, Alan H. Schulman18, Heidrun Gundlach, Michael W. Bevan4, Antonio Costa de Oliveira19, Luciano da C. Maia19, William R. Belknap6, Ning Jiang, Jinsheng Lai9, Liucun Zhu20, Jianxin Ma20, Cheng Sun21, Ellen J. Pritham21, Jérôme Salse, Florent Murat, Michael Abrouk, Rémy Bruggmann, Joachim Messing, Noah Fahlgren2, Christopher M. Sullivan2, James C. Carrington2, Elisabeth J. Chapman, Greg D. May22, Jixian Zhai23, Matthias Ganssmann23, Sai Guna Ranjan Gurazada23, Marcelo A German23, Blake C. Meyers23, Pamela J. Green23, Ludmila Tyler3, Jiajie Wu7, James A. Thomson6, Shan Chen13, Henrik Vibe Scheller24, Jesper Harholt25, Peter Ulvskov25, Jeffrey A. Kimbrel2, Laura E. Bartley24, Peijian Cao24, Ki-Hong Jung26, Manoj Sharma24, Miguel E. Vega-Sánchez24, Pamela C. Ronald24, Chris Dardick6, Stefanie De Bodt27, Wim Verelst27, Dirk Inzé27, Maren Heese28, Arp Schnittger28, Xiaohan Yang29, Udaya C. Kalluri29, Gerald A. Tuskan29, Zhihua Hua14, Richard D. Vierstra14, Yu Cui9, Shuhong Ouyang9, Qixin Sun9, Zhiyong Liu9, Alper Yilmaz30, Erich Grotewold30, Richard Sibout31, Kian Hématy31, Grégory Mouille31, Herman Höfte31, Todd P. Michael, Jérôme Pelloux32, Devin O'Connor3, James C. Schnable3, Scott C. Rowe3, Frank G. Harmon3, Cynthia L. Cass33, John C. Sedbrook33, Mary E. Byrne4, Sean Walsh4, Janet Higgins4, Pinghua Li16, Thomas P. Brutnell16, Turgay Unver34, Hikmet Budak34, Harry Belcram, Mathieu Charles, Boulos Chalhoub, Ivan Baxter35 
11 Feb 2010-Nature
TL;DR: The high-quality genome sequence will help Brachypodium reach its potential as an important model system for developing new energy and food crops and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat.
Abstract: Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.

1,603 citations

Journal ArticleDOI
Peter J. Campbell1, Gad Getz2, Jan O. Korbel3, Joshua M. Stuart4  +1329 moreInstitutions (238)
06 Feb 2020-Nature
TL;DR: The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.
Abstract: Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1,2,3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10,11,12,13,14,15,16,17,18.

1,600 citations

Journal ArticleDOI
Paramvir S. Dehal1, Yutaka Satou2, Robert K. Campbell3, Jarrod Chapman1, Bernard M. Degnan4, Anthony W. De Tomaso5, Brad Davidson6, Anna Di Gregorio6, Maarten D. Sollewijn Gelpke1, David Goodstein1, Naoe Harafuji6, Kenneth E. M. Hastings7, Isaac Ho1, Kohji Hotta8, Wayne Huang1, Takeshi Kawashima2, Patrick Lemaire9, Diego Martinez1, Ian A. Meinertzhagen10, Simona Necula1, Masaru Nonaka11, Nik Putnam1, Sam Rash1, Hidetoshi Saiga12, Masanobu Satake13, Astrid Terry1, Lixy Yamada2, Hong Gang Wang14, Satoko Awazu2, Kaoru Azumi15, Jeffrey L. Boore1, Margherita Branno16, Stephen T. Chin-Bow17, Rosaria DeSantis16, Sharon A. Doyle1, Pilar Francino1, David N. Keys6, David N. Keys1, Shinobu Haga8, Hiroko Hayashi8, Kyosuke Hino2, Kaoru S. Imai2, Kazuo Inaba13, Shungo Kano16, Shungo Kano2, Kenji Kobayashi2, Mari Kobayashi2, Byung In Lee1, Kazuhiro W. Makabe2, Chitra Manohar1, Giorgio Matassi16, Mónica Medina1, Yasuaki Mochizuki2, Steve Mount18, Tomomi Morishita8, Sachiko Miura8, Akie Nakayama2, Satoko Nishizaka8, Hisayo Nomoto8, Fumiko Ohta8, Kazuko Oishi8, Isidore Rigoutsos17, Masako Sano8, Akane Sasaki2, Yasunori Sasakura2, Eiichi Shoguchi2, Tadasu Shin-I8, Antoinetta Spagnuolo16, Didier Y.R. Stainier19, Miho Suzuki20, Olivier Tassy9, Naohito Takatori2, Miki Tokuoka2, Kasumi Yagi2, Fumiko Yoshizaki11, Shuichi Wada2, Cindy Zhang1, P. Douglas Hyatt21, Frank W. Larimer21, Chris Detter1, Norman A. Doggett22, Tijana Glavina1, Trevor Hawkins1, Paul G. Richardson1, Susan Lucas1, Yuji Kohara8, Michael Levine6, Nori Satoh2, Daniel S. Rokhsar6, Daniel S. Rokhsar1 
13 Dec 2002-Science
TL;DR: A draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis, is generated, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development.
Abstract: The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.

1,582 citations


Authors

Showing all 13660 results

NameH-indexPapersCitations
Martin White1962038232387
Paul G. Richardson1831533155912
Jie Zhang1784857221720
Krzysztof Matyjaszewski1691431128585
Yang Gao1682047146301
David Eisenberg156697112460
Marvin Johnson1491827119520
Carlos Escobar148118495346
Joshua A. Frieman144609109562
Paul Jackson141137293464
Greg Landsberg1411709109814
J. Conway1401692105213
Pushpalatha C Bhat1391587105044
Julian Borrill139387102906
Cecilia Elena Gerber1381727106984
Network Information
Related Institutions (5)
Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

ETH Zurich
122.4K papers, 5.1M citations

88% related

Texas A&M University
164.3K papers, 5.7M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202223
2021633
2020601
2019654
2018598