scispace - formally typeset
Open AccessJournal ArticleDOI

Matrix elasticity directs stem cell lineage specification.

Adam J. Engler, +3 more
- 25 Aug 2006 - 
- Vol. 126, Iss: 4, pp 677-689
Reads0
Chats0
TLDR
Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.
About
This article is published in Cell.The article was published on 2006-08-25 and is currently open access. It has received 12204 citations till now. The article focuses on the topics: Mesenchymal stem cell differentiation & Stem cell fate determination.

read more

Citations
More filters
Journal ArticleDOI

Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer

TL;DR: Current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression are discussed, and how improving understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies.
Journal ArticleDOI

Physical approaches to biomaterial design.

TL;DR: This work reviews the transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization in biomaterials for drug delivery, tissue engineering and medical diagnostics.
Journal ArticleDOI

Scaffolding in tissue engineering: general approaches and tissue-specific considerations.

TL;DR: The functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds are reviewed and the tissue-specific considerations for scaffolding are discussed, using intervertebral disc as an example.
Journal ArticleDOI

The Biology of YAP/TAZ: Hippo Signaling and Beyond

TL;DR: YAP/TAZ appear at the centerpiece of a signaling nexus by which cells take control of their behavior according to their own shape, spatial location and growth factor context, and are appealing therapeutic targets in cancer and regenerative medicine.
Journal ArticleDOI

A practical guide to hydrogels for cell culture.

TL;DR: Hydrogels are introduced to those who may be unfamiliar with procedures to culture and study cells with these systems, with a particular focus on commercially available hydrogels.
References
More filters
Journal ArticleDOI

Multilineage Potential of Adult Human Mesenchymal Stem Cells

TL;DR: Adult stem cells isolated from marrow aspirates of volunteer donors could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages.
Journal ArticleDOI

Tissue Cells Feel and Respond to the Stiffness of Their Substrate

TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Journal ArticleDOI

CellProfiler: image analysis software for identifying and quantifying cell phenotypes

TL;DR: The first free, open-source system designed for flexible, high-throughput cell image analysis, CellProfiler is described, which can address a variety of biological questions quantitatively.
Journal ArticleDOI

Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment

TL;DR: It is demonstrated that cell shape regulates commitment of human mesenchymal stem cells to adipocyte or osteoblast fate and mechanical cues experienced in developmental and adult contexts, embodied by cell shape, cytoskeletal tension, and RhoA signaling, are integral to the commitment of stem cell fate.
Journal ArticleDOI

Myofibroblasts and mechano-regulation of connective tissue remodelling

TL;DR: It is clear that the understanding of the myofibroblast — its origins, functions and molecular regulation — will have a profound influence on the future effectiveness not only of tissue engineering but also of regenerative medicine generally.
Related Papers (5)