scispace - formally typeset
Open AccessJournal ArticleDOI

Matrix elasticity directs stem cell lineage specification.

Adam J. Engler, +3 more
- 25 Aug 2006 - 
- Vol. 126, Iss: 4, pp 677-689
Reads0
Chats0
TLDR
Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.
About
This article is published in Cell.The article was published on 2006-08-25 and is currently open access. It has received 12204 citations till now. The article focuses on the topics: Mesenchymal stem cell differentiation & Stem cell fate determination.

read more

Citations
More filters
Journal ArticleDOI

Extracellular matrix: A dynamic microenvironment for stem cell niche

TL;DR: Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior.
Journal ArticleDOI

Mechanical regulation of cell function with geometrically modulated elastomeric substrates

TL;DR: It is demonstrated that micropost rigidity impacts cell morphology, focal adhesions, cytoskeletal contractility and stem cell differentiation, and early changes in cytoskeleton contractility predicted later stem cell fate decisions in single cells.
Journal ArticleDOI

Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

TL;DR: In covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular-traction, independent of cell morphology or matrix mechanics.
Journal ArticleDOI

Three-dimensional cell culture matrices: state of the art.

TL;DR: This review presents the status of state-of-the-art 3D cell-growth techniques and scaffolds and analyze them from the perspective of materials properties, manufacturing, and functionality and outlines key challenges in this field.
Journal ArticleDOI

Fibroblast Adaptation and Stiffness Matching to Soft Elastic Substrates

TL;DR: Within a range of stiffness spanning that of soft tissues, fibroblasts tune their internal stiffness to match that of their substrate, and modulation of cellular stiffness by the rigidity of the environment may be a mechanism used to direct cell migration and wound repair.
References
More filters
Journal ArticleDOI

Multilineage Potential of Adult Human Mesenchymal Stem Cells

TL;DR: Adult stem cells isolated from marrow aspirates of volunteer donors could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages.
Journal ArticleDOI

Tissue Cells Feel and Respond to the Stiffness of Their Substrate

TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Journal ArticleDOI

CellProfiler: image analysis software for identifying and quantifying cell phenotypes

TL;DR: The first free, open-source system designed for flexible, high-throughput cell image analysis, CellProfiler is described, which can address a variety of biological questions quantitatively.
Journal ArticleDOI

Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment

TL;DR: It is demonstrated that cell shape regulates commitment of human mesenchymal stem cells to adipocyte or osteoblast fate and mechanical cues experienced in developmental and adult contexts, embodied by cell shape, cytoskeletal tension, and RhoA signaling, are integral to the commitment of stem cell fate.
Journal ArticleDOI

Myofibroblasts and mechano-regulation of connective tissue remodelling

TL;DR: It is clear that the understanding of the myofibroblast — its origins, functions and molecular regulation — will have a profound influence on the future effectiveness not only of tissue engineering but also of regenerative medicine generally.
Related Papers (5)