scispace - formally typeset
Open AccessJournal ArticleDOI

Matrix elasticity directs stem cell lineage specification.

Adam J. Engler, +3 more
- 25 Aug 2006 - 
- Vol. 126, Iss: 4, pp 677-689
Reads0
Chats0
TLDR
Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.
About
This article is published in Cell.The article was published on 2006-08-25 and is currently open access. It has received 12204 citations till now. The article focuses on the topics: Mesenchymal stem cell differentiation & Stem cell fate determination.

read more

Citations
More filters
Journal ArticleDOI

Advanced Bioinks for 3D Printing: A Materials Science Perspective.

TL;DR: Some of the promising strategies being pursued to achieve advanced bioinks goals are described, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks, and the potential applications of these novel biomaterials to clinical use.
Journal ArticleDOI

Tissue Engineering for Cutaneous Wounds

TL;DR: The reader is introduced to the field of tissue engineering, tissue-engineered skin replacement is reviewed from a historical perspective, and current state-of-the-art concepts from a vantage point are reviewed.
Journal ArticleDOI

Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve

TL;DR: Polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue and can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing.
Journal ArticleDOI

Nanomaterials for Neural Interfaces

TL;DR: This review focuses on the application of nanomaterials for neural interfacing, covering a variety of specific applications of nanoengineered devices, including drug delivery, imaging, topographic patterning, electrode design, nanoscale transistors for high‐resolution neural interfaced, and photoactivated interfaces.

Combinatorial Development of Biomaterials for Clonal Growth of Human Pluripotent Stem Cells

TL;DR: These analyses show that optimal hES cell substrates are generated from monomers with high acrylate content, have a moderate wettability, and employ integrin αvβ3 and αv β5 engagement with adsorbed vitronectin to promote colony formation.
References
More filters
Journal ArticleDOI

Multilineage Potential of Adult Human Mesenchymal Stem Cells

TL;DR: Adult stem cells isolated from marrow aspirates of volunteer donors could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages.
Journal ArticleDOI

Tissue Cells Feel and Respond to the Stiffness of Their Substrate

TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Journal ArticleDOI

CellProfiler: image analysis software for identifying and quantifying cell phenotypes

TL;DR: The first free, open-source system designed for flexible, high-throughput cell image analysis, CellProfiler is described, which can address a variety of biological questions quantitatively.
Journal ArticleDOI

Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment

TL;DR: It is demonstrated that cell shape regulates commitment of human mesenchymal stem cells to adipocyte or osteoblast fate and mechanical cues experienced in developmental and adult contexts, embodied by cell shape, cytoskeletal tension, and RhoA signaling, are integral to the commitment of stem cell fate.
Journal ArticleDOI

Myofibroblasts and mechano-regulation of connective tissue remodelling

TL;DR: It is clear that the understanding of the myofibroblast — its origins, functions and molecular regulation — will have a profound influence on the future effectiveness not only of tissue engineering but also of regenerative medicine generally.
Related Papers (5)