scispace - formally typeset
Journal ArticleDOI

Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances

Elvira Fortunato, +2 more
- 12 Jun 2012 - 
- Vol. 24, Iss: 22, pp 2945-2986
TLDR
The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract
Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

read more

Citations
More filters
Journal ArticleDOI

Impact of pre-annealing process on electrical properties and stability of indium zinc oxide thin-film transistors

TL;DR: In this article , the effects of femtosecond laser irradiation on indium zinc oxide (IZO) films and annealing at high temperatures were examined, and the effect of no treatment versus plasma treatment was compared.
Journal ArticleDOI

Tunable Performance of P-Type Cu2O/SnO Bilayer Thin Film Transistors

TL;DR: In this paper, a tunable p-type thin film transistors (TFTs) were developed by adopting the Cu2O/SnO bilayer channel scheme, and the authors found that the thickness of the layer plays a major role in the oxidization process exerted onto the SnO layer underneath.
Journal ArticleDOI

Atomic Structure Evaluation of Solution-Processed a-IZO Films and Electrical Behavior of a-IZO TFTs

TL;DR: In this paper , the structural growth of amorphous indium-zinc-oxide (a-IZO) films and the electrical behavior of a-izO thin-film transistors were investigated.
Journal ArticleDOI

High-Performance In₂O₃-Based 1T1R FET for BEOL Memory Application

Abstract: In this article, we report high-performance one-transistor-one-resistor (1T1R) FETs for nonvolatile memory application based on nanometer-thick indium oxide (In2O3) as channel material deposited by atomic layer deposition (ALD). ALD grown hafnium oxide (HfO2) and aluminum oxide (Al2O3) are used as gate dielectrics as well as insulator in resistive part. Two nonvolatile states with different threshold voltages are realized. High ${I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}} > 10^{10}$ at ${V}_{\mathrm {GS}} =0$ V, large memory window (MW) exceeding 10 V, and deep sub-60-mV/dec subthreshold slope (SS) are achieved on ALD In2O3 1T1R FETs. Channel length ( ${L}_{\mathrm {ch}}$ ) and channel thickness ( ${T}_{\mathrm {ch}}$ ) dependence of device properties are systematically investigated. Optimized In2O3 thickness is determined to 1.2 nm, balancing ${I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}}$ , MW, device variation, and stability. The fabrication process has a low thermal budget below 225 °C. Thus, these 1T1R FETs are back-end-of-line (BEOL) compatible and promising for monolithic 3-D integration to realize near-/in-memory computing.
Journal ArticleDOI

Amorphous Ta2SnO6: A hole-dopable p-type oxide

TL;DR: The shallow VBE in a-Ta2SnO6 is due to the local structure disorder that circumvents the strong electrostatic Coulombic interaction between positively charged Ta5+ and Sn-5 s lone-pair electrons which accounts for the deep VBE and low p-type dopability as discussed by the authors .
References
More filters
Journal ArticleDOI

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors

TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Book

Semiconductor Material and Device Characterization

TL;DR: In this article, the authors present a characterization of the resistivity of a two-point-versus-four-point probe in terms of the number of contacts and the amount of contacts in the probe.
Journal ArticleDOI

High-κ gate dielectrics: Current status and materials properties considerations

TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Journal ArticleDOI

Organic Thin Film Transistors for Large Area Electronics

TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Journal ArticleDOI

Polymer‐Fullerene Bulk‐Heterojunction Solar Cells

TL;DR: An outlook is presented on what will be required to drive this young photovoltaic technology towards the next major milestone, a 10% power conversion efficiency, considered by many to represent the efficiency at which OPV can be adopted in wide-spread applications.
Related Papers (5)