scispace - formally typeset
Journal ArticleDOI

Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances

Elvira Fortunato, +2 more
- 12 Jun 2012 - 
- Vol. 24, Iss: 22, pp 2945-2986
TLDR
The recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed andp-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed.
Abstract
Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which has led to the fabrication of high performance n- and p-type oxide transistors as well as the fabrication of CMOS devices with and on paper.

read more

Citations
More filters
Journal ArticleDOI

A review of Ga2O3 materials, processing, and devices

TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Journal ArticleDOI

Metal oxides for optoelectronic applications

TL;DR: This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin- film transistors, solar cells, diodes and memories.
Journal ArticleDOI

Solution Combustion Synthesis of Nanoscale Materials

TL;DR: This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions.
Journal ArticleDOI

Recent Progress in Materials and Devices toward Printable and Flexible Sensors

TL;DR: In this review, recent progress in materials and devices for future wearable sensor technologies for bio and medical applications are reported.
Journal ArticleDOI

Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances

TL;DR: In this article, the recent progress in n-and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p type, and the major milestones already achieved with this emerging and very promising technology are summarized.
References
More filters
Journal ArticleDOI

Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs

TL;DR: In this paper, the effect of the annealing temperature and atmosphere on the properties of r.f. magnetron sputtered indium-zinc oxide (IZO) thin-films of two types: as-deposited and semiconductor films.
Journal ArticleDOI

Thin-film transistors with active layers of zinc oxide (ZnO) fabricated by low-temperature chemical bath method

TL;DR: In this article, thin-film transistors (TFTs) with active channel layers of zinc oxide (ZnO) using a low-temperature chemical bath deposition have been studied, where the ZnO films were fabricated on the defined-areas of bottom-gate type TFTs plate by immersing in a chemical bath containing zinc nitrate (zn(NO 3 ) 2.6H 2 O) and dimethylamineborane (DMAB) at 60 °C.
Journal ArticleDOI

p-type field-effect transistor of NiO with electric double-layer gating

TL;DR: In this paper, an electric double-layer transistor with a NiO single-crystal Mott insulator has been demonstrated with a field effect mobility and on/off ratio of 1.6×10−4cm2∕Vs and 130, respectively.
Journal ArticleDOI

Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors

TL;DR: In this paper, the performance of TFT structures with zinc tin oxide channel layer was investigated and the channel mobility and turn-on voltage were extracted from measured electrical characteristics, thus mapping TFT performance (for the process and structure used here) across the zinc tin dioxide composition/processing temperature space.
Journal ArticleDOI

Three-dimensionally stacked flexible integrated circuit: Amorphous oxide/polymer hybrid complementary inverter using n-type a-In–Ga–Zn–O and p-type poly-(9,9-dioctylfluorene-co-bithiophene) thin-film transistors

TL;DR: In this article, a three-dimensional vertically-stacked flexible integrated circuit is demonstrated based on hybrid complementary inverters made of n-type In-Ga-Zn-O (a-IGZO) amorphous oxide thin-film transistors (TFTs) and p-type poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2) polymer TFTs, where all the fabrication processes were performed at temperatures ≤120 °C.
Related Papers (5)