scispace - formally typeset
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

Prashant V. Kamat
- 18 Oct 2008 - 
- Vol. 112, Iss: 48, pp 18737-18753
TLDR
In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract
The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...

read more

Citations
More filters
Journal ArticleDOI

High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays

TL;DR: In this article, the correlation between the properties of PEC electrode and the nanoarrays structure (including nanorods and nanotubes, binary and ternary sensitizer, buffer layer), and the formation mechanism of NT based on chemical etching process was investigated.
Journal ArticleDOI

Tuning the Charge-Transfer Property of PbS-Quantum Dot/TiO2-Nanobelt Nanohybrids via Quantum Confinement

TL;DR: In this article, a photoactive nanohybrid structure based on the combination of near-infrared PbS quantum dots (QDs) as light harvester and one-dimensional TiO2 nanobelts (NBs) to guide the flow of photogenerated charge carriers is reported.
Journal ArticleDOI

Facile synthesis of open mesoporous carbon nanofibers with tailored nanostructure as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells

TL;DR: In this article, a reproducible approach was developed to fabricate novel mesoporous carbon nanofibers (MCNFs) with tailored nanostructure by using porous anodic aluminium oxide (AAO) membrane and colloidal silica as hard templates and phenolic resin as a carbon source.
Journal ArticleDOI

Solar Cells Using Quantum Funnels

TL;DR: A quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor is reported, which addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems.
References
More filters
Journal ArticleDOI

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells

TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Journal ArticleDOI

Polymer photovoltaic cells : enhanced efficiencies via a network of internal donor-acceptor heterojunctions

TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Journal ArticleDOI

The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment

TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Journal ArticleDOI

Semiconductor Nanocrystals as Fluorescent Biological Labels

TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Related Papers (5)