scispace - formally typeset
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

Prashant V. Kamat
- 18 Oct 2008 - 
- Vol. 112, Iss: 48, pp 18737-18753
TLDR
In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract
The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...

read more

Citations
More filters
Journal ArticleDOI

In-situ topotactic synthesis and photocatalytic activity of plate-like BiOCl/2D networks Bi2S3 heterostructures

TL;DR: In this paper, a uniform porous hierarchical plate-like BiOCl/2D networks Bi2S3 heterostructures realized by a facile two-step hydrothermal technique was demonstrated.
Journal ArticleDOI

From Flat to Nanostructured Photovoltaics: Balance between Thickness of the Absorber and Charge Screening in Sensitized Solar Cells

TL;DR: All-solid semiconductor sensitized solar cells, in the promising TiO(2)/Sb(2)S(3)/P3HT configuration, are studied, developing a cell performance model, based on impedance spectroscopy results, that allows us to determine the impact of the reduction of metal oxide film thickness on the operation of the solar cell.
Journal ArticleDOI

Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100).

TL;DR: A simple in situ post-synthetic halide salt treatment that results in size-independent air stability of lead selenide nanocrystal quantum dots without significantly altering their optoelectronic characteristics will enable broader utilization of PbSe NQDs in ambient conditions in many optoeLECTronic applications.
Journal ArticleDOI

Solar cells sensitized with type-II ZnSe–CdS core/shell colloidal quantum dots

TL;DR: Type-II quantum dots were applied for QDs-sensitized solar cells for the first time and showed prominent absorbed photon to current conversion efficiency.
References
More filters
Journal ArticleDOI

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells

TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Journal ArticleDOI

Polymer photovoltaic cells : enhanced efficiencies via a network of internal donor-acceptor heterojunctions

TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Journal ArticleDOI

The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment

TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Journal ArticleDOI

Semiconductor Nanocrystals as Fluorescent Biological Labels

TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Related Papers (5)