scispace - formally typeset
S

Shizuo Akira

Researcher at Osaka University

Publications -  1330
Citations -  344469

Shizuo Akira is an academic researcher from Osaka University. The author has contributed to research in topics: Innate immune system & Immune system. The author has an hindex of 261, co-authored 1308 publications receiving 320561 citations. Previous affiliations of Shizuo Akira include University of California, Berkeley & Wakayama Medical University.

Papers
More filters
Journal ArticleDOI

Toll-like receptors in innate immunity.

TL;DR: Toll-like receptors-mediated activation of innate immunity controls not only host defense against pathogens but also immune disorders, and the involvement of TLR-mediated pathways in autoimmune and inflammatory diseases has been proposed.
Journal ArticleDOI

Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity

TL;DR: The role played by TLRs in mounting protective immune responses against infection and their crosstalk with other PRRs with respect to pathogen recognition is focused on.
Journal ArticleDOI

Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway.

TL;DR: It is shown that TRIF is essential for TLR3- and TLR4-mediated signaling pathways facilitating mammalian antiviral host defense and complete loss of nuclear factor kappa B activation in response toTLR4 stimulation is demonstrated.
Journal ArticleDOI

Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway.

TL;DR: It is shown that the imidazoquinolines activate immune cells via the Toll-like receptor 7 (TLR7)-MyD88–dependent signaling pathway, and that neither MyD88- nor TLR7-deficient mice showed any inflammatory cytokine production by macrophages, proliferation of splenocytes or maturation of dendritic cells.
Journal ArticleDOI

IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction

TL;DR: IPS-1 contained an N-terminal CARD-like structure that mediated interaction with the CARD of RIG-I and Mda5, which are cytoplasmic RNA helicases that sense viral infection and blocked interferon induction by virus infection.