scispace - formally typeset
Search or ask a question
Institution

Agilent Technologies

CompanySanta Clara, California, United States
About: Agilent Technologies is a company organization based out in Santa Clara, California, United States. It is known for research contribution in the topics: Signal & Mass spectrometry. The organization has 7398 authors who have published 11518 publications receiving 262410 citations. The organization is also known as: Agilent Technologies, Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, gated Hall, resistivity and C-V measurements using a three-layer model to account for interface accumulation as well as the residual bulk-like intermediate region was determined.
Abstract: InAs is the only binary III-V compound semiconductor that exhibits a natural surface accumulation due to the high density of donor surface states. The Fermi level is pinned at any surface of an InAs wafer, regardless of orientation. It is therefore very likely that an accumulation layer is present at both the top and bottom surface or interface of a thin InAs epilayer with an intermediate bulk-like region between them. Epitaxial layers of InAs sandwiched between two 30 nm thick layers of In0.8Al0.2As or In0.52Al0.48As were grown on InP substrates by solid-source molecular beam epitaxy. Their static and dynamic properties were determined by means of gated Hall, resistivity and C-V measurements using a three-layer model to account for interface accumulation as well as the residual bulk-like intermediate region. The InAs/In0.8Al0.2As heterojunction interface has a significantly lower density of interface states than that of the In0.52Al0.48As/InAs interface. It is possible to drive such a structure from accumulation through flat band into depletion by means of moderate negative gate voltages. Using similar measurements, the effect of the thickness of the InAs layer as well as the presence or absence of a step-graded buffer on the density of surface states was determined.

56 citations

Journal ArticleDOI
30 Jan 2013-PLOS ONE
TL;DR: This work proposes a method that analyses in-cis correlated genes for evidence of in-trans association to biological processes, with no bias towards processes of a particular type or function, and identifies several known and novel cancer driver candidates.
Abstract: Genomic copy number alterations are common in cancer. Finding the genes causally implicated in oncogenesis is challenging because the gain or loss of a chromosomal region may affect a few key driver genes and many passengers. Integrative analyses have opened new vistas for addressing this issue. One approach is to identify genes with frequent copy number alterations and corresponding changes in expression. Several methods also analyse effects of transcriptional changes on known pathways. Here, we propose a method that analyses in-cis correlated genes for evidence of in-trans association to biological processes, with no bias towards processes of a particular type or function. The method aims to identify cis-regulated genes for which the expression correlation to other genes provides further evidence of a network-perturbing role in cancer. The proposed unsupervised approach involves a sequence of statistical tests to systematically narrow down the list of relevant genes, based on integrative analysis of copy number and gene expression data. A novel adjustment method handles confounding effects of co-occurring copy number aberrations, potentially a large source of false positives in such studies. Applying the method to whole-genome copy number and expression data from 100 primary breast carcinomas, 6373 genes were identified as commonly aberrant, 578 were highly in-cis correlated, and 56 were in addition associated in-trans to biological processes. Among these in-trans process associated and cis-correlated (iPAC) genes, 28% have previously been reported as breast cancer associated, and 64% as cancer associated. By combining statistical evidence from three separate subanalyses that focus respectively on copy number, gene expression and the combination of the two, the proposed method identifies several known and novel cancer driver candidates. Validation in an independent data set supports the conclusion that the method identifies genes implicated in cancer.

56 citations

Patent
23 Dec 2002
TL;DR: In this article, the phase difference of the reference signal and the oscillator signal of a PLL was determined using a phase detector and the output of the phase detector was provided to a loop filter to provide feedback to the VCO of the PLL.
Abstract: Tracking error in phase locked loop (PLL) devices is addressed utilizing feed-forward phase modulation. Specifically, the phase difference of the reference signal and said oscillator signal of a PLL may be determined utilizing a phase detector. The output of the phase detector may be provided to a loop filter to provide feedback to the VCO of the PLL. Additionally, the filtered phase difference may be provided to a suitably calibrated phase modulator to add an amount of phase modulation to the oscillator signal that is approximately equal and opposite to said phase difference to generate a corrected phase output signal.

56 citations

Patent
07 Oct 2004
TL;DR: In this paper, a solid state structure is provided and the structure is exposed to an ion beam, under fabrication process conditions for producing the structural feature, and the rate at which the detection species proceeds from the designated structure location is measured.
Abstract: The invention provides a method for controlled fabrication of a solid state structural feature. In the method, a solid state structure is provided and the structure is exposed to an ion beam, under fabrication process conditions for producing the structural feature. A physical detection species is directed toward a designated structure location, and the rate at which the detection species proceeds from the designated structure location is measured. Detection species rate measurements are fit to a mathematical model, and the fabrication process conditions are controlled, based on the fitted detection species rate measurements, to fabricate the structural feature.

56 citations

Patent
27 Mar 1999
TL;DR: In this article, a probe for measuring signals with a narrow contact pitch comprises an end section having a main tip member and a sub-tip member, each of which passes through one of two holes in a housing.
Abstract: A probe for measuring signals with a narrow contact pitch comprises an end section having a main tip member and a sub-tip member, each of which passes through one of two holes in a housing. The sub-tip member is electrically connected to the housing and the main-tip member is insulated from the housing by an insulation member. The sub-tip member is pivotally connected to the housing. The subtip member is asymmetric with respect to the pivot and therefore, its sharpened end can trace a circular orbit when the sub-tip member turns on its pivot. The distance between the two end sections of these tip members (that is, the contact pitch) can be set to a desired length by positioning sub-tip sharpened end section to any point on this orbit.

56 citations


Authors

Showing all 7402 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Zhuang Liu14953587662
Jie Liu131153168891
Thomas Quertermous10340552437
John E. Bowers102176749290
Roy G. Gordon8944931058
Masaru Tomita7667740415
Stuart Lindsay7434722224
Ron Shamir7431923670
W. Richard McCombie7114464155
Tomoyoshi Soga7139221209
Michael R. Krames6532118448
Shabaz Mohammed6418817254
Geert Leus6260919492
Giuseppe Gigli6154115159
Network Information
Related Institutions (5)
Technical University of Denmark
66.3K papers, 2.4M citations

80% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

80% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

80% related

Ghent University
111K papers, 3.7M citations

80% related

Purdue University
163.5K papers, 5.7M citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20228
2021142
2020157
2019168
2018164