scispace - formally typeset
Search or ask a question

Showing papers by "Medical Research Council published in 2014"


Journal ArticleDOI
TL;DR: Around a third of Alzheimer's diseases cases worldwide might be attributable to potentially modifiable risk factors, and Alzheimer's disease incidence might be reduced through improved access to education and use of effective methods targeted at reducing the prevalence of vascular risk factors.
Abstract: Summary Background Recent estimates suggesting that over half of Alzheimer's disease burden worldwide might be attributed to potentially modifiable risk factors do not take into account risk-factor non-independence. We aimed to provide specific estimates of preventive potential by accounting for the association between risk factors. Methods Using relative risks from existing meta-analyses, we estimated the population-attributable risk (PAR) of Alzheimer's disease worldwide and in the USA, Europe, and the UK for seven potentially modifiable risk factors that have consistent evidence of an association with the disease (diabetes, midlife hypertension, midlife obesity, physical inactivity, depression, smoking, and low educational attainment). The combined PAR associated with the risk factors was calculated using data from the Health Survey for England 2006 to estimate and adjust for the association between risk factors. The potential of risk factor reduction was assessed by examining the combined effect of relative reductions of 10% and 20% per decade for each of the seven risk factors on projections for Alzheimer's disease cases to 2050. Findings Worldwide, the highest estimated PAR was for low educational attainment (19·1%, 95% CI 12·3–25·6). The highest estimated PAR was for physical inactivity in the USA (21·0%, 95% CI 5·8–36·6), Europe (20·3%, 5·6–35·6), and the UK (21·8%, 6·1–37·7). Assuming independence, the combined worldwide PAR for the seven risk factors was 49·4% (95% CI 25·7–68·4), which equates to 16·8 million attributable cases (95% CI 8·7–23·2 million) of 33·9 million cases. However, after adjustment for the association between the risk factors, the estimate reduced to 28·2% (95% CI 14·2–41·5), which equates to 9·6 million attributable cases (95% CI 4·8–14·1 million) of 33·9 million cases. Combined PAR estimates were about 30% for the USA, Europe, and the UK. Assuming a causal relation and intervention at the correct age for prevention, relative reductions of 10% per decade in the prevalence of each of the seven risk factors could reduce the prevalence of Alzheimer's disease in 2050 by 8·3% worldwide. Interpretation After accounting for non-independence between risk factors, around a third of Alzheimer's diseases cases worldwide might be attributable to potentially modifiable risk factors. Alzheimer's disease incidence might be reduced through improved access to education and use of effective methods targeted at reducing the prevalence of vascular risk factors (eg, physical inactivity, smoking, midlife hypertension, midlife obesity, and diabetes) and depression. Funding National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care for Cambridgeshire and Peterborough.

1,854 citations


Journal ArticleDOI
TL;DR: Characterization of unannotated and uncharacterized protein segments is expected to lead to the discovery of novel functions as well as provide important insights into existing biological processes and is likely to shed new light on molecular mechanisms of diseases that are not yet fully understood.
Abstract: 1.1. Uncharacterized Protein Segments Are a Source of Functional Novelty Over the past decade, we have observed a massive increase in the amount of information describing protein sequences from a variety of organisms.1,2 While this may reflect the diversity in sequence space, and possibly also in function space,3 a large proportion of the sequences lacks any useful function annotation.4,5 Often these sequences are annotated as putative or hypothetical proteins, and for the majority their functions still remain unknown.6,7 Suggestions about potential protein function, primarily molecular function, often come from computational analysis of their sequences. For instance, homology detection allows for the transfer of information from well-characterized protein segments to those with similar sequences that lack annotation of molecular function.8−10 Other aspects of function, such as the biological processes proteins participate in, may come from genetic- and disease-association studies, expression and interaction network data, and comparative genomics approaches that investigate genomic context.11−17 Characterization of unannotated and uncharacterized protein segments is expected to lead to the discovery of novel functions as well as provide important insights into existing biological processes. In addition, it is likely to shed new light on molecular mechanisms of diseases that are not yet fully understood. Thus, uncharacterized protein segments are likely to be a large source of functional novelty relevant for discovering new biology.

1,540 citations


Journal ArticleDOI
TL;DR: This Review focuses on recent advances in liver fibrosis research as a paradigm for wound healing in solid organs and the role of the immune system in regulating and balancing this response.
Abstract: Fibrosis is a highly conserved and co-ordinated protective response to tissue injury. The interaction of multiple pathways, molecules and systems determines whether fibrosis is self-limiting and homeostatic, or whether it is uncontrolled and excessive. Immune cells have been identified as key players in this fibrotic cascade, with the capacity to exert either injury-inducing or repair-promoting effects. A multi-organ approach was recently suggested to identify the core and regulatory pathways in fibrosis, with the aim of integrating the wealth of information emerging from basic fibrosis research. In this Review, we focus on recent advances in liver fibrosis research as a paradigm for wound healing in solid organs and the role of the immune system in regulating and balancing this response.

985 citations


09 Jul 2014
TL;DR: Uncharacterized and uncharacterized protein segments are likely to be a large source of functional novelty relevant for discovering new biology as discussed by the authors, which is likely to lead to the discovery of novel functions as well as provide important insights into existing biological processes.
Abstract: 1.1. Uncharacterized Protein Segments Are a Source of Functional Novelty Over the past decade, we have observed a massive increase in the amount of information describing protein sequences from a variety of organisms.1,2 While this may reflect the diversity in sequence space, and possibly also in function space,3 a large proportion of the sequences lacks any useful function annotation.4,5 Often these sequences are annotated as putative or hypothetical proteins, and for the majority their functions still remain unknown.6,7 Suggestions about potential protein function, primarily molecular function, often come from computational analysis of their sequences. For instance, homology detection allows for the transfer of information from well-characterized protein segments to those with similar sequences that lack annotation of molecular function.8−10 Other aspects of function, such as the biological processes proteins participate in, may come from genetic- and disease-association studies, expression and interaction network data, and comparative genomics approaches that investigate genomic context.11−17 Characterization of unannotated and uncharacterized protein segments is expected to lead to the discovery of novel functions as well as provide important insights into existing biological processes. In addition, it is likely to shed new light on molecular mechanisms of diseases that are not yet fully understood. Thus, uncharacterized protein segments are likely to be a large source of functional novelty relevant for discovering new biology.

966 citations


Journal ArticleDOI
04 Dec 2014-PLOS ONE
TL;DR: This is the first study to provide normative data for grip strength across the life course and these centile values have the potential to inform the clinical assessment of grip strength which is recognised as an important part of the identification of people with sarcopenia and frailty.
Abstract: Introduction: Epidemiological studies have shown that weaker grip strength in later life is associated with disability, morbidity, and mortality. Grip strength is a key component of the sarcopenia and frailty phenotypes and yet it is unclear how individual measurements should be interpreted. Our objective was to produce cross-sectional centile values for grip strength across the life course. A secondary objective was to examine the impact of different aspects of measurement protocol. Methods: We combined 60,803 observations from 49,964 participants (26,687 female) of 12 general population studies in Great Britain. We produced centile curves for ages 4 to 90 and investigated the prevalence of weak grip, defined as strength at least 2.5 SDs below the gender-specific peak mean. We carried out a series of sensitivity analyses to assess the impact of dynamometer type and measurement position (seated or standing). Results: Our results suggested three overall periods: an increase to peak in early adult life, maintenance through to midlife, and decline from midlife onwards. Males were on average stronger than females from adolescence onwards: males’ peak median grip was 51 kg between ages 29 and 39, compared to 31 kg in females between ages 26 and 42. Weak grip strength, defined as strength at least 2.5 SDs below the gender-specific peak mean, increased sharply with age, reaching a prevalence of 23% in males and 27% in females by age 80. Sensitivity analyses

636 citations


Journal ArticleDOI
TL;DR: Accelerometer outputs from AG and GA seem comparable when attached to the same body location in adults, whereas inconsistent differences are apparent between the two brands and placements in children, hence limiting the comparability between brands in this age group.
Abstract: PurposeThe study aims were to compare raw triaxial accelerometer output from ActiGraph GT3X+ (AG) and GENEActiv (GA) placed on the hip and the wrist and to develop regression equations for estimating energy expenditure.MethodsThirty children (7–11 yr) and 30 adults (18–65 yr) completed eight

621 citations


Journal ArticleDOI
26 Mar 2014-JAMA
TL;DR: Radiofrequency ablation resulted in a reduced risk of neoplastic progression over 3 years of follow-up and the data and safety monitoring board recommended early termination of the trial due to superiority of ablation for the primary outcome and the potential for patient safety issues if the trial continued.
Abstract: RESULTS Sixty-eight patients were randomized to receive ablation and 68 to receive control. Ablation reduced the risk of progression to high-grade dysplasia or adenocarcinoma by 25.0% (1.5% for ablation vs 26.5% for control; 95% CI, 14.1%-35.9%; P < .001) and the risk of progression to adenocarcinoma by 7.4% (1.5% for ablation vs 8.8% for control; 95% CI, 0%-14.7%; P = .03). Among patients in the ablation group, complete eradication occurred in 92.6% for dysplasia and 88.2% for intestinal metaplasia compared with 27.9% for dysplasia and 0.0% for intestinal metaplasia among patients in the control group (P < .001). Treatment-related adverse events occurred in 19.1% of patients receiving ablation (P < .001). The most common adverse event was stricture, occurring in 8 patients receiving ablation (11.8%), all resolved by endoscopic dilation (median, 1 session). The data and safety monitoring board recommended early termination of the trial due to superiority of ablation for the primary outcome and the potential for patient safety issues if the trial continued.

547 citations


Journal ArticleDOI
21 Jul 2014-PLOS ONE
TL;DR: This study investigated the size-dependent toxic effects of a well-characterized library of Ag NPs to several microbial species, protozoans, algae, crustaceans and mammalian cells in vitro and showed that the toxicity of 20–80 nm Ag NPS could fully be explained by released Ag ions whereas 10 nm AgNPs proved more toxic than predicted.
Abstract: The concept of nanotechnologies is based on size-dependent properties of particles in the 1–100 nm range. However, the relation between the particle size and biological effects is still unclear. The aim of the current paper was to generate and analyse a homogenous set of experimental toxicity data on Ag nanoparticles (Ag NPs) of similar coating (citrate) but of 5 different primary sizes (10, 20, 40, 60 and 80 nm) to different types of organisms/cells commonly used in toxicity assays: bacterial, yeast and algal cells, crustaceans and mammalian cells in vitro. When possible, the assays were conducted in ultrapure water to minimise the effect of medium components on silver speciation. The toxic effects of NPs to different organisms varied about two orders of magnitude, being the lowest (∼0.1 mg Ag/L) for crustaceans and algae and the highest (∼26 mg Ag/L) for mammalian cells. To quantify the role of Ag ions in the toxicity of Ag NPs, we normalized the EC50 values to Ag ions that dissolved from the NPs. The analysis showed that the toxicity of 20–80 nm Ag NPs could fully be explained by released Ag ions whereas 10 nm Ag NPs proved more toxic than predicted. Using E. coli Ag-biosensor, we demonstrated that 10 nm Ag NPs were more bioavailable to E. coli than silver salt (AgNO3). Thus, one may infer that 10 nm Ag NPs had more efficient cell-particle contact resulting in higher intracellular bioavailability of silver than in case of bigger NPs. Although the latter conclusion is initially based on one test organism, it may lead to an explanation for “size-dependent“ biological effects of silver NPs. This study, for the first time, investigated the size-dependent toxic effects of a well-characterized library of Ag NPs to several microbial species, protozoans, algae, crustaceans and mammalian cells in vitro.

479 citations


Journal ArticleDOI
TL;DR: R reverse-phase protein arrays are used to analyze 3,467 patient samples from 11 TCGA “Pan-Cancer” diseases, using 181 high-quality antibodies that target 128 total proteins and 53 post-translationally modified proteins to provide a framework for determining the prognostic, predictive and therapeutic relevance of the functional proteome.
Abstract: Protein levels and function are poorly predicted by genomic and transcriptomic analysis of patient tumours. Therefore, direct study of the functional proteome has the potential to provide a wealth of information that complements and extends genomic, epigenomic and transcriptomic analysis in The Cancer Genome Atlas (TCGA) projects. Here we use reverse-phase protein arrays to analyse 3,467 patient samples from 11 TCGA 'Pan-Cancer' diseases, using 181 high-quality antibodies that target 128 total proteins and 53 post-translationally modified proteins. The resultant proteomic data are integrated with genomic and transcriptomic analyses of the same samples to identify commonalities, differences, emergent pathways and network biology within and across tumour lineages. In addition, tissue-specific signals are reduced computationally to enhance biomarker and target discovery spanning multiple tumour lineages. This integrative analysis, with an emphasis on pathways and potentially actionable proteins, provides a framework for determining the prognostic, predictive and therapeutic relevance of the functional proteome.

473 citations


Journal ArticleDOI
13 Feb 2014-Nature
TL;DR: The genome sequence of a male infant recovered from the Anzick burial site in western Montana is sequenced and it is shown that the gene flow from the Siberian Upper Palaeolithic Mal’ta population into Native American ancestors is also shared by the AnZick-1 individual and thus happened before 12,600 years bp.
Abstract: Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 C-14 years before present (BP) (13,000 to 12,600 calendar years BP)(1,2). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology(3). However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans(2). An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum(4). Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 +/- 35 C-14 years BP (approximately 12,707-12,556 calendar years BP) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4x and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population(5) into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years BP. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.

464 citations


Journal ArticleDOI
TL;DR: The bioorthogonal chemistries used for labeling proteins are introduced and their utility for protein labeling is commented on before providing a perspective on future directions.
Abstract: O the past 15 years a great deal of progress has been made on the discovery, rediscovery, and invention of bioorthogonal reactions between functional groups that do not react with biological entities under physiological conditions but selectively react with each other. Strategies for labeling different classes of biomolecules have been developed by coopting the biosynthetic machinery of cells to introduce molecules containing bioorthogonal functional groups. Tagging approaches have allowed some additional functional groups to be attached to proteins, and genetic code expansion and reprogramming have facilitated the site-specific incorporation of unnatural amino acids bearing bioorthogonal functional groups into proteins in bacteria, mammalian cells, and animals via the discovery and synthetic evolution of orthogonal aminoacyl-tRNA synthetase/tRNA pairs and orthogonal ribosomes. In addition, selective pressure incorporation and its derivatives have allowed the statistical labeling of proteins and proteomes with analogues of natural amino acids. The incorporation of unnatural amino acids bearing bioorthogonal functional groups and their chemoselective labeling has great potential for imaging and controlling individual proteins and labeling proteomes, but the ability of investigators to leverage these approaches for biological discovery will be crucially dependent on the properties of the chemical reactions used. The reactants in a bioorthogonal reaction should be kinetically, thermodynamically, and metabolically stable before the reaction takes place and not toxic to living systems. The reaction should yield stable covalent linkages with no or innocuous byproducts. Moreover, the two bioorthogonal moieties have to react selectively with each other under physiological conditions (ambient temperature and pressure, neutral pH, aqueous conditions), without either of them crossreacting with the plethora of chemical functionalities found in living cells. Despite the challenges of meeting these criteria, a number of reactions have been developed that show good biocompatibility and selectivity in living systems (see Figure 1). Some of these reactions are chemoselective with respect to many but not all biological functionalities and have been used to label proteins in vitro and on the cell surface, while other reactions have additionally been used for the more challenging task of labeling proteins inside cells or living animals. Most bioorthogonal reactions follow second-order kinetics, and their rates depend directly on the concentrations of both reaction partners as well as on the intrinsic second-order rate constant k2 [M −1 s−1] of the reaction. Rapid reactions with high second-order rate constants are therefore advantageous for labeling during biological processes that occur on a very short time scale or for the labeling of low abundance proteins. Lower abundance proteins can sometimes be labeled with a large excess of labeling reagent, but this strategy may be practically limited by solubility, off target reactions and toxicity. Bioorthogonal reactions for which one partner can be installed into proteins are summarized in Figure 1. Their second-order rate constants span 9 orders of magnitude with the fastest bioorthogonal labeling reactions reaching rates up to 10 M−1 s−1, which approaches the rate constants for many enzymatic labeling approaches. Here we briefly introduce the bioorthogonal chemistries used for labeling proteins and comment on their utility for protein labeling before providing a perspective on future directions. Amongst the first functionalities to be explored as bioorthogonal reporters were ketones and aldehydes. Under acidic conditions (pH 4−6) their carbonyl groups react with strong α-effect nucleophiles such as hydrazines and alkoxyamines. Ketone/aldehyde condensations show rather slow kinetics with second-order rate constants in the range of 10−4 to 10−3 M−1 s−1, necessitating high concentrations of labeling reagent in order to achieve good labeling, which might be problematic in terms of toxicity and background signal. In general ketone/aldehyde condensations are best suited for in vitro or cell-surface labeling, because the reaction requires an acidic pH, which is difficult to obtain inside most cellular compartments. Furthermore, inside living cells, α-effect nucleophiles may undergo side-reactions with carbonyl-bearing metabolites. A functionality that is essentially absent from biological systems and truly orthogonal in its reactivity to the majority of biological functionalities is the azide group. Azide-bearing unnatural amino acids have been incorporated into proteins and used in a variety of chemical reactions. One potential limitation of the use of azides for protein labeling is that some unnatural amino acids bearing azides appear to be reduced in some proteins examined. Azide-modified proteins have been reacted with phosphines in Staudinger ligations. This reaction has been used to label biomolecules in living cells and animals. The Staudinger ligation, however, has slow kinetics: the reaction proceeds with second-order rate constants in the low 10−3 M−1 s−1 range. In addition many of the phosphine reagents are oxidized by air or metabolic enzymes. Azides can also react with terminal alkynes in [3 + 2] cycloadditions, catalyzed by Cu salts. The CuAAC (Cucatalyzed alkyne−azide cycloaddition) reaction proceeds considerably faster than the Staudinger ligation in physiological settings. However, its reliance on the Cu catalyst is not without problems, since Cu may be toxic to living systems, and decreasing the copper concentration is generally accompanied by a large decrease in reaction rate. The development of tailored water-soluble Cu ligands and/or

Journal ArticleDOI
05 Aug 2014-BMJ
TL;DR: BCG protects against M tuberculosis infection as well as progression from infection to disease, and the observed protection was similar when estimated with the two types of interferon γ release assays (ELISpot or QuantiFERON).
Abstract: Objectives To determine whether BCG vaccination protects against Mycobacterium tuberculosis infection as assessed by interferon γ release assays (IGRA) in children. Design Systematic review and meta-analysis. Searches of electronic databases 1950 to November 2013, checking of reference lists, hand searching of journals, and contact with experts. Setting Community congregate settings and households. Inclusion criteria Vaccinated and unvaccinated children aged under 16 with known recent exposure to patients with pulmonary tuberculosis. Children were screened for infection with M tuberculosis with interferon γ release assays. Data extraction Study results relating to diagnostic accuracy were extracted and risk estimates were combined with random effects meta-analysis. Results The primary analysis included 14 studies and 3855 participants. The estimated overall risk ratio was 0.81 (95% confidence interval 0.71 to 0.92), indicating a protective efficacy of 19% against infection among vaccinated children after exposure compared with unvaccinated children. The observed protection was similar when estimated with the two types of interferon γ release assays (ELISpot or QuantiFERON). Restriction of the analysis to the six studies (n=1745) with information on progression to active tuberculosis at the time of screening showed protection against infection of 27% (risk ratio 0.73, 0.61 to 0.87) compared with 71% (0.29, 0.15 to 0.58) against active tuberculosis. Among those infected, protection against progression to disease was 58% (0.42, 0.23 to 0.77). Conclusions BCG protects against M tuberculosis infection as well as progression from infection to disease. Trial registration PROSPERO registration No CRD42011001698 (www.crd.york.ac.uk/prospero/).

Journal ArticleDOI
TL;DR: This work presents a high-throughput approach (Capture-C) to analyze cis interactions, interrogating hundreds of specific interactions at high resolution in a single experiment and shows how this approach will facilitate detailed, genome-wide analysis to elucidate the general principles by which cis-acting sequences control gene expression.
Abstract: Gene expression during development and differentiation is regulated in a cell- and stage-specific manner by complex networks of intergenic and intragenic cis-regulatory elements whose numbers and representation in the genome far exceed those of structural genes. Using chromosome conformation capture, it is now possible to analyze in detail the interaction between enhancers, silencers, boundary elements and promoters at individual loci, but these techniques are not readily scalable. Here we present a high-throughput approach (Capture-C) to analyze cis interactions, interrogating hundreds of specific interactions at high resolution in a single experiment. We show how this approach will facilitate detailed, genome-wide analysis to elucidate the general principles by which cis-acting sequences control gene expression. In addition, we show how Capture-C will expedite identification of the target genes and functional effects of SNPs that are associated with complex diseases, which most frequently lie in intergenic cis-acting regulatory elements.

Journal ArticleDOI
TL;DR: Practical guidance on how to handle missing data in within-trial CEAs following a principled approach is provided, which is implemented in three stages: descriptive analysis to inform the assumption on the missing data mechanism; how to choose between alternative methods given their underlying assumptions; and methods for sensitivity analysis.
Abstract: Missing data are a frequent problem in cost-effectiveness analysis (CEA) within a randomised controlled trial. Inappropriate methods to handle missing data can lead to misleading results and ultimately can affect the decision of whether an intervention is good value for money. This article provides practical guidance on how to handle missing data in within-trial CEAs following a principled approach: (i) the analysis should be based on a plausible assumption for the missing data mechanism, i.e. whether the probability that data are missing is independent of or dependent on the observed and/or unobserved values; (ii) the method chosen for the base-case should fit with the assumed mechanism; and (iii) sensitivity analysis should be conducted to explore to what extent the results change with the assumption made. This approach is implemented in three stages, which are described in detail: (1) descriptive analysis to inform the assumption on the missing data mechanism; (2) how to choose between alternative methods given their underlying assumptions; and (3) methods for sensitivity analysis. The case study illustrates how to apply this approach in practice, including software code. The article concludes with recommendations for practice and suggestions for future research.

Journal ArticleDOI
TL;DR: The purpose of this Review is to summarize recent directions in methodology for detecting epistasis and to discuss evidence of the role of epistasis in human complex trait variation.
Abstract: Genome-wide association studies (GWASs) have become the focus of the statistical analysis of complex traits in humans, successfully shedding light on several aspects of genetic architecture and biological aetiology. Single-nucleotide polymorphisms (SNPs) are usually modelled as having additive, cumulative and independent effects on the phenotype. Although evidently a useful approach, it is often argued that this is not a realistic biological model and that epistasis (that is, the statistical interaction between SNPs) should be included. The purpose of this Review is to summarize recent directions in methodology for detecting epistasis and to discuss evidence of the role of epistasis in human complex trait variation. We also discuss the relevance of epistasis in the context of GWASs and potential hazards in the interpretation of statistical interaction terms.

Journal ArticleDOI
TL;DR: Recent studies in which C. rodentium has been used to study mucosal immunology are discussed, including the deregulation of intestinal inflammatory responses during bacteria-induced colitis and the role of the intestinal microbiota in mediating resistance to colonization by enteric pathogens.
Abstract: Citrobacter rodentium is a mucosal pathogen of mice that shares several pathogenic mechanisms with enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC), which are two clinically important human gastrointestinal pathogens. Thus, C. rodentium has long been used as a model to understand the molecular basis of EPEC and EHEC infection in vivo. In this Review, we discuss recent studies in which C. rodentium has been used to study mucosal immunology, including the deregulation of intestinal inflammatory responses during bacteria-induced colitis and the role of the intestinal microbiota in mediating resistance to colonization by enteric pathogens. These insights should help to elucidate the roles of mucosal inflammatory responses and the microbiota in the virulence of enteric pathogens.

Journal ArticleDOI
TL;DR: It is shown that imprinted genes influence an extraordinarily wide-ranging array of biological processes, the effects of which extend into adulthood, and play important parts in common diseases that range from obesity to psychiatric disorders.
Abstract: Imprinted genes influence a wide range of biological processes, the effects of which extend from prenatal stages to adulthood. This Review discusses the role of imprinted genes, with a focus on postnatal and adult phenotypes, and their contribution to common diseases such as intrauterine growth restriction, obesity, psychiatric disorders and cancer.

Journal ArticleDOI
TL;DR: In this article, a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data is presented. But this protocol is not suitable for large consortia such as the GIANT Consortium.
Abstract: Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta-level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.

Journal ArticleDOI
TL;DR: Telomere length is longer in females than males, although this difference was not universally found in studies that did not use Southern blot methods, and further research on explanations for the methodological differences is required.

Journal ArticleDOI
14 Aug 2014-PLOS ONE
TL;DR: Task-shifting from physicians to NPHWs, if accompanied by health system re-structuring is a potentially effective and affordable strategy for improving access to healthcare for NCDs.
Abstract: Background: One potential solution to limited healthcare access in low and middle income countries (LMIC) is task-shiftingthe training of non-physician healthcare workers (NPHWs) to perform tasks traditionally undertaken by physicians. The aim of this paper is to conduct a systematic review of studies involving task-shifting for the management of non-communicable disease (NCD) in LMIC. Methods: A search strategy with the following terms ‘‘task-shifting’’, ‘‘non-physician healthcare workers’’, ‘‘community healthcare worker’’, ‘‘hypertension’’, ‘‘diabetes’’, ‘‘cardiovascular disease’’, ‘‘mental health’’, ‘‘depression’’, ‘‘chronic obstructive pulmonary disease’’, ‘‘respiratory disease’’, ‘‘cancer’’ was conducted using Medline via Pubmed and the Cochrane library. Two reviewers independently reviewed the databases and extracted the data. Findings: Our search generated 7176 articles of which 22 were included in the review. Seven studies were randomised controlled trials and 15 were observational studies. Tasks performed by NPHWs included screening for NCDs and providing primary health care. The majority of studies showed improved health outcomes when compared with usual healthcare, including reductions in blood pressure, increased uptake of medications and lower depression scores. Factors such as training of NPHWs, provision of algorithms and protocols for screening, treatment and drug titration were the main enablers of the task-shifting intervention. The main barriers identified were restrictions on prescribing medications and availability of medicines. Only two studies described cost-effective analyses, both of which demonstrated that task-shifting was costeffective. Conclusions: Task-shifting from physicians to NPHWs, if accompanied by health system re-structuring is a potentially effective and affordable strategy for improving access to healthcare for NCDs. Since the majority of study designs reviewed were of inadequate quality, future research methods should include robust evaluations of such strategies.

Journal ArticleDOI
TL;DR: Noninferiority of the 4-month regimen to the standard regimen with respect to the primary efficacy end point was not shown, and there was no evidence of increased risks of prolongation of the QT interval or dysglycemia with the 4 month regimen.
Abstract: BackgroundShortening the course of treatment for tuberculosis would be a major improvement for case management and disease control. This phase 3 trial assessed the efficacy and safety of a 4-month gatifloxacin-containing regimen for treating rifampin-sensitive pulmonary tuberculosis. MethodsWe conducted a noninferiority, randomized, open-label, controlled trial involving patients 18 to 65 years of age with smear-positive, rifampin-sensitive, newly diagnosed pulmonary tuberculosis in five sub-Saharan African countries. A standard 6-month regimen that included ethambutol during the 2-month intensive phase was compared with a 4-month regimen in which gatifloxacin (400 mg per day) was substituted for ethambutol during the intensive phase and was continued, along with rifampin and isoniazid, during the continuation phase. The primary efficacy end point was an unfavorable outcome (treatment failure, recurrence, or death or study dropout during treatment) measured 24 months after the end of treatment, with a non...

Journal ArticleDOI
Charles N. Rotimi1, Akin Abayomi2, Alash'le Abimiku3, Victoria Adabayeri4  +242 moreInstitutions (82)
20 Jun 2014-Science
TL;DR: If the dearth of genomics research involving Africans persists, the potential health and economic benefits emanating from genomic science may elude an entire continent.
Abstract: H3Africa is developing capacity for health-related genomics research in Africa Our understanding of genome biology, genomics, and disease, and even human history, has advanced tremendously with the completion of the Human Genome Project. Technological advances coupled with significant cost reductions in genomic research have yielded novel insights into disease etiology, diagnosis, and therapy for some of the world's most intractable and devastating diseases—including malaria, HIV/AIDS, tuberculosis, cancer, and diabetes. Yet, despite the burden of infectious diseases and, more recently, noncommunicable diseases (NCDs) in Africa, Africans have only participated minimally in genomics research. Of the thousands of genome-wide association studies (GWASs) that have been conducted globally, only seven (for HIV susceptibility, malaria, tuberculosis, and podoconiosis) have been conducted exclusively on African participants; four others (for prostate cancer, obsessive compulsive disorder, and anthropometry) included some African participants (www.genome.gov/gwastudies/). As discussed in 2011 (www.h3africa.org), if the dearth of genomics research involving Africans persists, the potential health and economic benefits emanating from genomic science may elude an entire continent.

Journal ArticleDOI
TL;DR: Overall genus-level microbiota composition exhibit a shift in controls from low to high levels of Prevotella and in MSD cases from high to low levels of Escherichia/Shigella in younger versus older children; however, there was significant variation among many genera by both site and age.
Abstract: Background: Diarrheal diseases continue to contribute significantly to morbidity and mortality in infants and young children in developing countries. There is an urgent need to better understand the contributions of novel, potentially uncultured, diarrheal pathogens to severe diarrheal disease, as well as distortions in normal gut microbiota composition that might facilitate severe disease. Results: We use high throughput 16S rRNA gene sequencing to compare fecal microbiota composition in children under five years of age who have been diagnosed with moderate to severe diarrhea (MSD) with the microbiota from diarrhea-free controls. Our study includes 992 children from four low-income countries in West and East Africa, and Southeast Asia. Known pathogens, as well as bacteria currently not considered as important diarrhea-causing pathogens, are positively associated with MSD, and these include Escherichia/Shigella, and Granulicatella species, and Streptococcus mitis/pneumoniae groups. In both cases and controls, there tend to be distinct negative correlations between facultative anaerobic lineages and obligate anaerobic lineages. Overall genus-level microbiota composition exhibit a shift in controls from low to high levels of Prevotella and in MSD cases from high to low levels of Escherichia/Shigella in younger versus older children; however, there was significant variation among many genera by both site and age. Conclusions: Our findings expand the current understanding of microbiota-associated diarrhea pathogenicity in young children from developing countries. Our findings are necessarily based on correlative analyses and must be further validated through epidemiological and molecular techniques.

Journal ArticleDOI
TL;DR: The evidence base is currently insufficient to support definite clinical recommendations regarding vitamin D supplementation in pregnancy, and modest positive relationships were identified between maternal 25(OH)D status and offspring birthweight, bone mass and serum calcium concentrations.
Abstract: Background It is unclear whether or not the current evidence base allows definite conclusions to be made regarding the optimal maternal circulating concentration of 25-hydroxyvitamin D [25(OH)D] during pregnancy, and how this might best be achieved. Objectives To answer the following questions: (1) What are the clinical criteria for vitamin D deficiency in pregnant women? (2) What adverse maternal and neonatal health outcomes are associated with low maternal circulating 25(OH)D? (3) Does maternal supplementation with vitamin D in pregnancy lead to an improvement in these outcomes (including assessment of compliance and effectiveness)? (4) What is the optimal type (D2 or D3), dose, regimen and route for vitamin D supplementation in pregnancy? (5) Is supplementation with vitamin D in pregnancy likely to be cost-effective? Methods We performed a systematic review and where possible combined study results using meta-analysis to estimate the combined effect size. Major electronic databases [including Database of Abstracts of Reviews of Effects (DARE), Centre for Reviews and Dissemination (CRD), Cochrane Database of Systematic Reviews (CDSR) and the Health Technology Assessment (HTA) database] were searched from inception up to June 2012 covering both published and grey literature. Bibliographies of selected papers were hand-searched for additional references. Relevant authors were contacted for any unpublished findings and additional data if necessary. Abstracts were reviewed by two reviewers. Inclusion and exclusion criteria Subjects: pregnant women or pregnant women and their offspring. Exposure: either assessment of vitamin D status [dietary intake, sunlight exposure, circulating 25(OH)D concentration] or supplementation of participants with vitamin D or food containing vitamin D (e.g. oily fish). Outcomes: offspring – birthweight, birth length, head circumference, bone mass, anthropometry and body composition, risk of asthma and atopy, small for gestational dates, preterm birth, type 1 diabetes mellitus, low birthweight, serum calcium concentration, blood pressure and rickets; mother – pre-eclampsia, gestational diabetes mellitus, risk of caesarean section and bacterial vaginosis. Results Seventy-six studies were included. There was considerable heterogeneity between the studies and for most outcomes there was conflicting evidence. The evidence base was insufficient to reliably answer question 1 in relation to biochemical or disease outcomes. For questions 2 and 3, modest positive relationships were identified between maternal 25(OH)D and (1) offspring birthweight in meta-analysis of three observational studies using log-transformed 25(OH)D concentrations after adjustment for potential confounding factors [pooled regression coefficient 5.63 g/10% change maternal 25(OH)D, 95% confidence interval (CI) 1.11 to 10.16 g], but not in those four studies using natural units, or across intervention studies; (2) offspring cord blood or postnatal calcium concentrations in a meta-analysis of six intervention studies (all found to be at high risk of bias; mean difference 0.05 mmol/l, 95% CI 0.02 to 0.05 mmol/l); and (3) offspring bone mass in observational studies judged to be of good quality, but which did not permit meta-analysis. The evidence base was insufficient to reliably answer questions 4 and 5. Limitations Study methodology varied widely in terms of study design, population used, vitamin D status assessment, exposure measured and outcome definition. Conclusions The evidence base is currently insufficient to support definite clinical recommendations regarding vitamin D supplementation in pregnancy. Although there is modest evidence to support a relationship between maternal 25(OH)D status and offspring birthweight, bone mass and serum calcium concentrations, these findings were limited by their observational nature (birthweight, bone mass) or risk of bias and low quality (calcium concentrations). High-quality randomised trials are now required. Study registration This study is registered as PROSPERO CRD42011001426. Funding The National Institute for Health Research Health Technology Assessment programme.

Journal ArticleDOI
TL;DR: Overall, it is shown that socioeconomic status, gender, age, parity, physical inactivity, and increased energy, fat, and sugar intake are powerful predictors of overweight and/or obesity.
Abstract: This review illustrates the outcomes of the nutrition transition in Sub-Saharan Africa (SSA) and its association with overweight and obesity; the relationship with the double burden of malnutrition is also explored. We describe the increase in overweight in nearly all Sub-Saharan African countries and present data on associated increased gross domestic product, and availability of energy, protein, fat, and sugar at country national levels. Predictors of overweight are described by means of various studies undertaken in SSA, and dietary intakes of numerous countries are presented. Overall, we show that socioeconomic status, gender, age, parity, physical inactivity, and increased energy, fat, and sugar intake are powerful predictors of overweight and/or obesity. The urgency for health interventions in countries in the early stages of the nutrition transition is emphasized, particularly in view of the fact that fat intake is still less than 30% of energy intake in nearly all Sub-Saharan African countries.

Journal ArticleDOI
01 Jun 2014-Diabetes
TL;DR: By assembling extensive data on continuous glycemic traits, this work has exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
Abstract: Patients with established type 2 diabetes display both β-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci, and indices of proinsulin processing, insulin secretion, and insulin sensitivity. We included data from up to 58,614 nondiabetic subjects with basal measures and 17,327 with dynamic measures. We used additive genetic models with adjustment for sex, age, and BMI, followed by fixed-effects, inverse-variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second cluster (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without a detectable change in fasting glucose levels. The final group contained 20 risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.

Journal ArticleDOI
TL;DR: A holidic medium is described that is equal in performance to an oligidic diet optimized for adult fecundity and lifespan and it is reported that folic acid from the microbiota is sufficient for Drosophila development.
Abstract: A critical requirement for research using model organisms is a well-defined and consistent diet. There is currently no complete chemically defined (holidic) diet available for Drosophila melanogaster. We describe a holidic medium that is equal in performance to an oligidic diet optimized for adult fecundity and lifespan. This holidic diet supports development over multiple generations but at a reduced rate. Over 7 years of experiments, the holidic diet yielded more consistent experimental outcomes than did oligidic food for egg laying by females. Nutrients and drugs were more available to flies in holidic medium and, similar to dietary restriction on oligidic food, amino acid dilution increased fly lifespan. We used this holidic medium to investigate amino acid-specific effects on food-choice behavior and report that folic acid from the microbiota is sufficient for Drosophila development.

Journal ArticleDOI
TL;DR: Asthmatic epithelial cells have an increased intrinsic capacity for expression of a pro–type 2 cytokine in response to a viral infection, and IL-25 is a key mediator of RV-induced exacerbations of pulmonary inflammation.
Abstract: Rhinoviruses (RVs), which are the most common cause of virally induced asthma exacerbations, account for much of the burden of asthma in terms of morbidity, mortality, and associated cost. Interleukin-25 (IL-25) activates type 2–driven inflammation and is therefore potentially important in virally induced asthma exacerbations. To investigate this, we examined whether RV-induced IL-25 could contribute to asthma exacerbations. RV-infected cultured asthmatic bronchial epithelial cells exhibited a heightened intrinsic capacity for IL-25 expression, which correlated with donor atopic status. In vivo human IL-25 expression was greater in asthmatics at baseline and during experimental RV infection. In addition, in mice, RV infection induced IL-25 expression and augmented allergen-induced IL-25. Blockade of the IL-25 receptor reduced many RV-induced exacerbation-specific responses including type 2 cytokine expression, mucus production, and recruitment of eosinophils, neutrophils, basophils, and T and non-T type 2 cells. Therefore, asthmatic epithelial cells have an increased intrinsic capacity for expression of a pro–type 2 cytokine in response to a viral infection, and IL-25 is a key mediator of RV-induced exacerbations of pulmonary inflammation.

Journal ArticleDOI
TL;DR: A quadrivalent vaccine that includes O antigens from S. sonnei, S. flexneri, and S.flexneri 6 should provide broad protection in Shigella case isolates.
Abstract: Background Shigella, a major diarrheal disease pathogen worldwide, is the target of vaccine development. The Global Enteric Multicenter Study (GEMS) investigated burden and etiology of moderate-to-severe diarrheal disease in children aged Methods Subjects' stool specimens/rectal swabs were transported to site laboratories in transport media and plated onto xylose lysine desoxycholate and MacConkey agar. Suspect Shigella colonies were identified by biochemical tests and agglutination with antisera. Shigella isolates were shipped to the GEMS Reference Laboratory (Baltimore, MD) for confirmation and serotyping of S. flexneri; one-third of isolates were sent to the Centers for Disease Control and Prevention for quality control. Results Shigella dysenteriae and S. boydii accounted for 5.0% and 5.4%, respectively, of 1130 Shigella case isolates; S. flexneri comprised 65.9% and S. sonnei 23.7%. Five serotypes/subserotypes comprised 89.4% of S. flexneri, including S. flexneri 2a, S. flexneri 6, S. flexneri 3a, S. flexneri 2b, and S. flexneri 1b. Conclusions A broad-spectrum Shigella vaccine must protect against S. sonnei and 15 S. flexneri serotypes/subserotypes. A quadrivalent vaccine with O antigens from S. sonnei, S. flexneri 2a, S. flexneri 3a, and S. flexneri 6 can provide broad direct coverage against these most common serotypes and indirect coverage against all but 1 (rare) remaining subserotype through shared S. flexneri group antigens.

Journal ArticleDOI
21 Nov 2014-Science
TL;DR: The mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and this process is mediated by turnover of transcription factor (TF) recognition elements.
Abstract: To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.