scispace - formally typeset
Search or ask a question

Showing papers by "University of Delaware published in 2012"


Journal ArticleDOI
Kaoru Hagiwara, Ken Ichi Hikasa1, Koji Nakamura, Masaharu Tanabashi1, M. Aguilar-Benitez, Claude Amsler2, R. M. Barnett3, P. R. Burchat4, C. D. Carone5, C. Caso6, G. Conforto7, Olav Dahl3, Michael Doser8, Semen Eidelman9, Jonathan L. Feng10, L. K. Gibbons11, M. C. Goodman12, Christoph Grab13, D. E. Groom3, Atul Gurtu14, Atul Gurtu8, K. G. Hayes15, J.J. Hernández-Rey16, K. Honscheid17, Christopher Kolda18, Michelangelo L. Mangano8, D. M. Manley19, Aneesh V. Manohar20, John March-Russell8, Alberto Masoni, Ramon Miquel3, Klaus Mönig, Hitoshi Murayama21, Hitoshi Murayama3, S. Sánchez Navas13, Keith A. Olive22, Luc Pape8, C. Patrignani6, A. Piepke23, Matts Roos24, John Terning25, Nils A. Tornqvist24, T. G. Trippe3, Petr Vogel26, C. G. Wohl3, Ron L. Workman27, W-M. Yao3, B. Armstrong3, P. S. Gee3, K. S. Lugovsky, S. B. Lugovsky, V. S. Lugovsky, Marina Artuso28, D. Asner29, K. S. Babu30, E. L. Barberio8, Marco Battaglia8, H. Bichsel31, O. Biebel32, P. Bloch8, Robert N. Cahn3, Ariella Cattai8, R.S. Chivukula33, R. Cousins34, G. A. Cowan35, Thibault Damour36, K. Desler, R. J. Donahue3, D. A. Edwards, Victor Daniel Elvira37, Jens Erler38, V. V. Ezhela, A Fassò8, W. Fetscher13, Brian D. Fields39, B. Foster40, Daniel Froidevaux8, Masataka Fukugita41, Thomas K. Gaisser42, L. A. Garren37, H J Gerber13, Frederick J. Gilman43, Howard E. Haber44, C. A. Hagmann29, J.L. Hewett4, Ian Hinchliffe3, Craig J. Hogan31, G. Höhler45, P. Igo-Kemenes46, John David Jackson3, Kurtis F Johnson47, D. Karlen48, B. Kayser37, S. R. Klein3, Konrad Kleinknecht49, I.G. Knowles50, P. Kreitz4, Yu V. Kuyanov, R. Landua8, Paul Langacker38, L. S. Littenberg51, Alan D. Martin52, Tatsuya Nakada8, Tatsuya Nakada53, Meenakshi Narain33, Paolo Nason, John A. Peacock54, H. R. Quinn55, Stuart Raby17, Georg G. Raffelt32, E. A. Razuvaev, B. Renk49, L. Rolandi8, Michael T Ronan3, L.J. Rosenberg54, C.T. Sachrajda55, A. I. Sanda56, Subir Sarkar57, Michael Schmitt58, O. Schneider53, Douglas Scott59, W. G. Seligman60, M. H. Shaevitz60, Torbjörn Sjöstrand61, George F. Smoot3, Stefan M Spanier4, H. Spieler3, N. J. C. Spooner62, Mark Srednicki63, Achim Stahl, Todor Stanev42, M. Suzuki3, N. P. Tkachenko, German Valencia64, K. van Bibber29, Manuella Vincter65, D. R. Ward66, Bryan R. Webber66, M R Whalley52, Lincoln Wolfenstein43, J. Womersley37, C. L. Woody51, Oleg Zenin 
Tohoku University1, University of Zurich2, Lawrence Berkeley National Laboratory3, Stanford University4, College of William & Mary5, University of Genoa6, University of Urbino7, CERN8, Budker Institute of Nuclear Physics9, University of California, Irvine10, Cornell University11, Argonne National Laboratory12, ETH Zurich13, Tata Institute of Fundamental Research14, Hillsdale College15, Spanish National Research Council16, Ohio State University17, University of Notre Dame18, Kent State University19, University of California, San Diego20, University of California, Berkeley21, University of Minnesota22, University of Alabama23, University of Helsinki24, Los Alamos National Laboratory25, California Institute of Technology26, George Washington University27, Syracuse University28, Lawrence Livermore National Laboratory29, Oklahoma State University–Stillwater30, University of Washington31, Max Planck Society32, Boston University33, University of California, Los Angeles34, Royal Holloway, University of London35, Université Paris-Saclay36, Fermilab37, University of Pennsylvania38, University of Illinois at Urbana–Champaign39, University of Bristol40, University of Tokyo41, University of Delaware42, Carnegie Mellon University43, University of California, Santa Cruz44, Karlsruhe Institute of Technology45, Heidelberg University46, Florida State University47, Carleton University48, University of Mainz49, University of Edinburgh50, Brookhaven National Laboratory51, Durham University52, University of Lausanne53, Massachusetts Institute of Technology54, University of Southampton55, Nagoya University56, University of Oxford57, Northwestern University58, University of British Columbia59, Columbia University60, Lund University61, University of Sheffield62, University of California, Santa Barbara63, Iowa State University64, University of Alberta65, University of Cambridge66
TL;DR: The Particle Data Group's biennial review as mentioned in this paper summarizes much of particle physics, using data from previous editions, plus 2658 new measurements from 644 papers, and lists, evaluates, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, V-cb & V-ub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

4,465 citations


Journal ArticleDOI
Shusei Sato, Satoshi Tabata, Hideki Hirakawa, Erika Asamizu  +320 moreInstitutions (51)
31 May 2012-Nature
TL;DR: A high-quality genome sequence of domesticated tomato is presented, a draft sequence of its closest wild relative, Solanum pimpinellifolium, is compared, and the two tomato genomes are compared to each other and to the potato genome.
Abstract: Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.

2,687 citations


Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: The sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy and transcriptomes of development and stress response and the proteome of the shell are reported, showing that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes.
Abstract: The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.

1,806 citations


Journal ArticleDOI
TL;DR: The first synthesis of NiMo nitride nanosheets on a carbon support (NiMoNx/C) is reported, and the high HER electrocatalytic activity of the resulting NiMoNX/C catalyst with low overpotential and small Tafel slope is demonstrated.
Abstract: Hydrogen production through splitting of water has attracted great scientific interest because of its relevance to renewable energy storage and its potential for providing energy without the emission of carbon dioxide. Electrocatalytic systems for H2 generation typically incorporate noble metals such as Pt in the catalysts because of their low overpotential and fast kinetics for driving the hydrogen evolution reaction (HER). However, the high costs and limited world-wide supply of these noble metals make their application in viable commercial processes unattractive. Several non-noble metal materials, such as transition-metal chalcogenides, carbides, and complexes as well as metal alloys have been widely investigated recently, and characterized as catalysts and supports for application in the evolution of hydrogen. Nitrides of early transition-metals have been shown to have excellent catalytic activities in a variety of reactions. One of the primary interests in the applications of nitrides in these reactions was to use them in conjunction with low-cost alternative metals to replace group VIII noble metals. For example, the function of molybdenum nitride as a catalyst for hydrocarbon hydrogenolysis resembles that of platinum. The catalytic and electronic properties of transition-metal nitrides are governed by their bulk and surface structure and stoichiometry. While there is some information concerning the effect of the bulk composition on the catalytic properties of this material, there is currently little known about the effects of the surface nanostructure. Nickel and nickel–molybdenum are known electrocatalysts for hydrogen production in alkaline electrolytes, and in the bulk form they exhibited exchange current densities between 10 6 and 10 4 Acm , compared to 10 3 Acm 2 for Pt. Jaksic et al. postulated a hypo-hyper-d-electronic interactive effect between Ni and Mo that yields the synergism for the HER. Owing to their poor corrosion stability, few studies in acidic media have been reported.With the objective of exploiting the decrease in the overpotential by carrying out the HER in acidic media, we have developed a low-cost, stable, and active molybdenum-nitride-based electrocatalyst for the HER. Guided by the “volcano plot” in which the activity for the evolution of hydrogen as a function of the M H bond strength exhibits an ascending branch followed by a descending branch, peaking at Pt, we designed a material on the molecular scale combining nickel, which binds H weakly, with molybdenum, which binds H strongly. Here we report the first synthesis of NiMo nitride nanosheets on a carbon support (NiMoNx/C), and demonstrate the high HER electrocatalytic activity of the resulting NiMoNx/C catalyst with low overpotential and small Tafel slope. The NiMoNx/C catalyst was synthesized by reduction of a carbon-supported ammonium molybdate [(NH4)6Mo7O24·4H2O] and nickel nitrate (Ni(NO3)2·4H2O) mixture in a tubular oven in H2 at 400 8C, and subsequent reaction with NH3 at 700 8C. During this process, the (NH4)6Mo7O24 and Ni(NO3)2 precursors were reduced to NiMo metal particles by H2, and then they were mildly transformed to NiMoNx nanosheets by reaction with ammonia. The atomic ratio of Ni/Mo was 1/4.7 determined by energy dispersive X-ray spectroscopy (EDX) on the NiMoNx/ C sample. The transmission electron microscopy (TEM) images, as shown in Figure 1a, display NiMo particles that are mainly spherical. The high-resolution TEM image, as shown in the inset of Figure 1a, corroborated the presence of an amorphous 3 to 5 nm Ni/Mo oxide layer (see Figure S4 in the Supporting Information for resolved image), whereas NiMoNx is characterized by thin, flat, and flaky stacks composed of nanosheets with high radial-axial ratios (Figure 1b and Figure S5 in the Supporting Information for a magnified image). Figure 1c shows that some of the nanosheets lay flat on the graphite carbon (as indicated by the black arrows), and some have folded edges that show different layers of NiMoNx sheets (white arrows). The thickness of the sheets ranged from 4 to 15 nm. The average stacking number of sheets measured from Figure 1b is about [*] Dr. W.-F. Chen, Dr. K. Sasaki, Dr. J. T. Muckerman, Dr. R. R. Adzic Chemistry Department, Brookhaven National Laboratory Upton, NY 11973 (USA) E-mail: ksasaki@bnl.gov

1,135 citations


Journal ArticleDOI
TL;DR: The chiral stationary phase for high-performance liquid chromatography showed good chiral recognition ability and the chiral phase showed good Raman recognition ability, which is important for future generations of racemates.
Abstract: Supported Catalysts Weiting Yu,† Marc D. Porosoff,† and Jingguang G. Chen*,†,‡,§ †Catalysis Center for Energy Innovation, Department of Chemical and Bimolecular Engineering, University of Delaware, Newark, Delaware 19716, United States ‡Department of Chemical Engineering, Columbia University, New York, New York 10027, United States Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States

1,039 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed, present and evaluate a refined, statistical index of model performance, which is a reformulation of Willmott's index of agreement, which was developed in the 1980s.
Abstract: In this paper, we develop, present and evaluate a refined, statistical index of model performance. This ‘new’ measure (dr) is a reformulation of Willmott's index of agreement, which was developed in the 1980s. It (dr) is dimensionless, bounded by − 1.0 and 1.0 and, in general, more rationally related to model accuracy than are other existing indices. It also is quite flexible, making it applicable to a wide range of model-performance problems. The two main published versions of Willmott's index as well as four other comparable dimensionless indices—proposed by Nash and Sutcliffe in 1970, Watterson in 1996, Legates and McCabe in 1999 and Mielke and Berry in 2001—are compared with the new index. Of the six, Legates and McCabe's measure is most similar to dr. Repeated calculations of all six indices, from intensive random resamplings of predicted and observed spaces, are used to show the covariation and differences between the various indices, as well as their relative efficacies. Copyright © 2011 Royal Meteorological Society

924 citations


Journal ArticleDOI
TL;DR: In this paper, the technical, economic and policy aspects of solar energy development and deployment are analyzed, including tax credits and exemptions, feed-in-tariff, preferential interest rates, renewable portfolio standards and voluntary green power programs in many countries.
Abstract: Solar energy has experienced phenomenal growth in recent years due to both technological improvements resulting in cost reductions and government policies supportive of renewable energy development and utilization. This study analyzes the technical, economic and policy aspects of solar energy development and deployment. While the cost of solar energy has declined rapidly in the recent past, it still remains much higher than the cost of conventional energy technologies. Like other renewable energy technologies, solar energy benefits from fiscal and regulatory incentives, including tax credits and exemptions, feed-in-tariff, preferential interest rates, renewable portfolio standards and voluntary green power programs in many countries. The emerging carbon credit markets are expected to provide additional incentives to solar energy deployment; however, the scale of incentives provided by the existing carbon market instruments, such as, the Clean Development Mechanism of the Kyoto Protocol is limited. Despite the huge technical potential, the development and large scale deployment of solar energy technologies world-wide still has to overcome a number of technical, financial, regulatory and institutional barriers. The continuation of policy supports might be necessary for several decades to maintain and enhance the growth of solar energy in both developed and developing countries.

547 citations


Journal ArticleDOI
Nasim Mavaddat1, Daniel Barrowdale1, Irene L. Andrulis2, Susan M. Domchek3, Diana Eccles4, Heli Nevanlinna5, Susan J. Ramus6, Amanda B. Spurdle7, Mark E. Robson8, Mark E. Sherman9, Anna Marie Mulligan2, Fergus J. Couch10, Christoph Engel11, Lesley McGuffog1, Sue Healey7, Olga M. Sinilnikova12, Melissa C. Southey13, Mary Beth Terry8, David E. Goldgar14, Frances P. O'Malley2, Esther M. John15, Ramunas Janavicius16, Laima Tihomirova17, Thomas Hansen18, Finn Cilius Nielsen18, Ana Osorio, Alexandra V. Stavropoulou, Javier Benitez19, Siranoush Manoukian, Bernard Peissel, Monica Barile, Sara Volorio, Barbara Pasini20, Riccardo Dolcetti, Anna Laura Putignano21, Laura Ottini22, Paolo Radice, Ute Hamann23, Muhammad Usman Rashid24, Frans B. L. Hogervorst, Mieke Kriege25, Rob B. van der Luijt26, Susan Peock1, Debra Frost1, D. Gareth Evans, Carole Brewer27, Lisa Walker28, Mark T. Rogers29, Lucy Side30, C. E. Houghton, Jo Ellen Weaver31, Andrew K. Godwin32, Rita K. Schmutzler33, Barbara Wappenschmidt33, Alfons Meindl34, Karin Kast35, Norbert Arnold36, Dieter Niederacher37, Christian Sutter38, Helmut Deissler39, Doroteha Gadzicki40, Sabine Preisler-Adams41, Raymonda Varon-Mateeva42, Ines Schönbuchner43, Heidrun Gevensleben, Dominique Stoppa-Lyonnet44, Muriel Belotti, Laure Barjhoux12, Claudine Isaacs45, Beth N. Peshkin45, Trinidad Caldés19, Miguel De Al Hoya, Carmen Cañadas, Tuomas Heikkinen5, Päivi Heikkilä5, Kristiina Aittomäki5, Ignacio Blanco, Conxi Lázaro, Joan Brunet, Bjarni A. Agnarsson, Adalgeir Arason, Rosa B. Barkardottir, Martine Dumont46, Jacques Simard46, Marco Montagna, Simona Agata, Emma D'Andrea47, Max Yan, Stephen B. Fox48, Timothy R. Rebbeck, Wendy S. Rubinstein49, Nadine Tung, Judy Garber50, Xianshu Wang10, Zachary S. Fredericksen10, Vernon S. Pankratz10, Noralane M. Lindor10, Csilla Szabo51, Kenneth Offit8, Rita A. Sakr8, Mia M. Gaudet52, Christian F. Singer53, Muy Kheng Tea53, Christine Rappaport53, Phuong L. Mai9, Mark H. Greene9, Anna P. Sokolenko, Evgeny N. Imyanitov, Amanda E. Toland54, Leigha Senter54, Kevin Sweet54, Mads Thomassen55, Anne-Marie Gerdes18, Torben A Kruse55, Maria A. Caligo56, Paolo Aretini56, Johanna Rantala57, Anna Von Wachenfeld57, Karin M. Henriksson58, Linda Steele59, Susan L. Neuhausen59, Robert L. Nussbaum60, Mary S. Beattie60, Kunle Odunsi61, Lara Sucheston61, Simon A. Gayther6, Katherine L. Nathanson3, Jenny Gross62, Christine Walsh62, Beth Y. Karlan62, Georgia Chenevix-Trench7, Douglas F. Easton1, Antonis C. Antoniou1 
University of Cambridge1, University of Toronto2, University of Pennsylvania3, University of Southampton4, University of Helsinki5, University of Southern California6, QIMR Berghofer Medical Research Institute7, Columbia University8, National Institutes of Health9, Mayo Clinic10, Leipzig University11, Claude Bernard University Lyon 112, University of Melbourne13, University of Utah14, Cancer Prevention Institute of California15, Vilnius University16, University of Latvia17, University of Copenhagen18, Complutense University of Madrid19, University of Turin20, University of Florence21, Sapienza University of Rome22, German Cancer Research Center23, Memorial Hospital of South Bend24, Erasmus University Rotterdam25, Utrecht University26, Royal Devon and Exeter Hospital27, Churchill Hospital28, University Hospital of Wales29, University College London30, Fox Chase Cancer Center31, University of Kansas32, University of Cologne33, Technische Universität München34, Dresden University of Technology35, University of Kiel36, University of Düsseldorf37, Heidelberg University38, University of Ulm39, Hannover Medical School40, University of Münster41, Charité42, University of Würzburg43, University of Paris44, Georgetown University45, Laval University46, University of Padua47, Peter MacCallum Cancer Centre48, University of Chicago49, Harvard University50, University of Delaware51, American Cancer Society52, Medical University of Vienna53, Ohio State University54, University of Southern Denmark55, University of Pisa56, Karolinska Institutet57, Lund University58, City of Hope National Medical Center59, University of California, San Francisco60, Roswell Park Cancer Institute61, Cedars-Sinai Medical Center62
TL;DR: Pathologic characteristics of BRCA1 and BRCa2 tumors may be useful for improving risk-prediction algorithms and informing clinical strategies for screening and prophylaxis.
Abstract: BACKGROUND: Previously, small studies have found that BRCA1 and BRCA2 breast tumors differ in their pathology. Analysis of larger datasets of mutation carriers should allow further tumor characterization.METHODS: We used data from 4,325 BRCA1 and 2,568 BRCA2 mutation carriers to analyze the pathology of invasive breast, ovarian, and contralateral breast cancers.RESULTS: There was strong evidence that the proportion of estrogen receptor (ER)-negative breast tumors decreased with age at diagnosis among BRCA1 (P-trend = 1.2 × 10(-5)), but increased with age at diagnosis among BRCA2, carriers (P-trend = 6.8 × 10(-6)). The proportion of triple-negative tumors decreased with age at diagnosis in BRCA1 carriers but increased with age at diagnosis of BRCA2 carriers. In both BRCA1 and BRCA2 carriers, ER-negative tumors were of higher histologic grade than ER-positive tumors (grade 3 vs. grade 1; P = 1.2 × 10(-13) for BRCA1 and P = 0.001 for BRCA2). ER and progesterone receptor (PR) expression were independently associated with mutation carrier status [ER-positive odds ratio (OR) for BRCA2 = 9.4, 95% CI: 7.0-12.6 and PR-positive OR = 1.7, 95% CI: 1.3-2.3, under joint analysis]. Lobular tumors were more likely to be BRCA2-related (OR for BRCA2 = 3.3, 95% CI: 2.4-4.4; P = 4.4 × 10(-14)), and medullary tumors BRCA1-related (OR for BRCA2 = 0.25, 95% CI: 0.18-0.35; P = 2.3 × 10(-15)). ER-status of the first breast cancer was predictive of ER-status of asynchronous contralateral breast cancer (P = 0.0004 for BRCA1; P = 0.002 for BRCA2). There were no significant differences in ovarian cancer morphology between BRCA1 and BRCA2 carriers (serous: 67%; mucinous: 1%; endometrioid: 12%; clear-cell: 2%).Conclusions/Impact: Pathologic characteristics of BRCA1 and BRCA2 tumors may be useful for improving risk-prediction algorithms and informing clinical strategies for screening and prophylaxis. Cancer Epidemiol Biomarkers Prev; 1-14. ©2011 AACR.

514 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify ten fundamental research challenges that, if overcome, would facilitate commercialization of pyrolytic biofuels and present a review of relevant literature.
Abstract: Pyrolytic biofuels have technical advantages over conventional biological conversion processes since the entire plant can be used as the feedstock (rather than only simple sugars) and the conversion process occurs in only a few seconds (rather than hours or days). Despite decades of study, the fundamental science of biomass pyrolysis is still lacking and detailed models capable of describing the chemistry and transport in real-world reactors is unavailable. Developing these descriptions is a challenge because of the complexity of feedstocks and the multiphase nature of the conversion process. Here, we identify ten fundamental research challenges that, if overcome, would facilitate commercialization of pyrolytic biofuels. In particular, developing fundamental descriptions for condensed-phase pyrolysis chemistry (i.e., elementary reaction mechanisms) are needed since they would allow for accurate process optimization as well as feedstock flexibility, both of which are critical to any modern high-throughput process. Despite the benefits to pyrolysis commercialization, detailed chemical mechanisms are not available today, even for major products such as levoglucosan and hydroxymethylfurfural (HMF). Additionally, accurate estimates for heat and mass transfer parameters (e.g., thermal conductivity, diffusivity) are lacking despite the fact that biomass conversion in commercial pyrolysis reactors is controlled by transport. Finally, we examine methods for improving pyrolysis particle models, which connect fundamental chemical and transport descriptions to real-world pyrolysis reactors. Each of the ten challenges is presented with a brief review of relevant literature followed by future directions which can ultimately lead to technological breakthroughs that would facilitate commercialization of pyrolytic biofuels.

494 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify seven key components: the objectives being pursued, the origin of the commodity flows to be transported, knowledge of demand, the decision-making structure, periodicity and volume of logistic activities, and the state of the social networks and supporting systems.

489 citations


Journal ArticleDOI
TL;DR: A high-order adaptive time-stepping TVD solver for the fully nonlinear Boussinesq model of Chen (2006), extended to include moving reference level as in Kennedy et al. (2001).

Journal ArticleDOI
TL;DR: The state of the art advances in CNT-based continuous fibers in terms of their fabrication methods, characterization and modeling of mechanical and physical properties, and applications are assessed.
Abstract: The superb mechanical and physical properties of individual carbon nanotubes (CNTs) have provided the impetus for researchers in developing high-performance continuous fibers based upon CNTs. The reported high specific strength, specific stiffness and electrical conductivity of CNT fibers demonstrate the potential of their wide application in many fields. In this review paper, we assess the state of the art advances in CNT-based continuous fibers in terms of their fabrication methods, characterization and modeling of mechanical and physical properties, and applications. The opportunities and challenges in CNT fiber research are also discussed.

Journal ArticleDOI
TL;DR: Based on profile observations and a one-dimensional column model, Wang et al. as mentioned in this paper demonstrate that plastic debris is vertically distributed within the upper water column due to wind-driven mixing, which suggests that total oceanic plastics concentrations are significantly underestimated by traditional surface measurements, requiring a reinterpretation of existing plastic marine debris data sets.
Abstract: [1] Micro-plastic marine debris is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant. The fate and transport of plastic marine debris is governed by poorly understood geophysical processes, such as ocean mixing within the surface boundary layer. Based on profile observations and a one-dimensional column model, we demonstrate that plastic debris is vertically distributed within the upper water column due to wind-driven mixing. These results suggest that total oceanic plastics concentrations are significantly underestimated by traditional surface measurements, requiring a reinterpretation of existing plastic marine debris data sets. A geophysical approach must be taken in order to properly quantify and manage this form of marine pollution.

Journal ArticleDOI
TL;DR: It is found that WC and W(2)C are both excellent cathode support materials for ML Pt, exhibiting HER activities that are comparable to bulk Pt while displaying stable HER activity during chronopotentiometric HER measurements.
Abstract: This work explores the opportunity to substantially reduce the cost of hydrogen evolution reaction (HER) catalysts by supporting monolayer (ML) amounts of precious metals on transition metal carbide substrates. The metal component includes platinum (Pt), palladium (Pd), and gold (Au); the low-cost carbide substrate includes tungsten carbides (WC and W2C) and molybdenum carbide (Mo2C). As a platform for these studies, single-phase carbide thin films with well-characterized surfaces have been synthesized, allowing for a direct comparison of the intrinsic HER activity of bare and Pt-modified carbide surfaces. It is found that WC and W2C are both excellent cathode support materials for ML Pt, exhibiting HER activities that are comparable to bulk Pt while displaying stable HER activity during chronopotentiometric HER measurements. The findings of excellent stability and HER activity of the ML Pt–WC and Pt–W2C surfaces may be explained by the similar bulk electronic properties of tungsten carbides to Pt, as is ...

Journal ArticleDOI
TL;DR: A fluorogenic reaction between bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) and tetrazines that is 3–7 orders of magnitude faster than many bioorthogonal reactions is reported.
Abstract: Rapid, site-specific labeling of proteins with diverse probes remains an outstanding challenge for chemical biologists. Enzyme-mediated labeling approaches may be rapid but use protein or peptide fusions that introduce perturbations into the protein under study and may limit the sites that can be labeled, while many “bioorthogonal” reactions for which a component can be genetically encoded are too slow to effect quantitative site-specific labeling of proteins on a time scale that is useful for studying many biological processes. We report a fluorogenic reaction between bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) and tetrazines that is 3–7 orders of magnitude faster than many bioorthogonal reactions. Unlike the reactions of strained alkenes, including trans-cyclooctenes and norbornenes, with tetrazines, the BCN–tetrazine reaction gives a single product of defined stereochemistry. We have discovered aminoacyl-tRNA synthetase/tRNA pairs for the efficient site-specific incorporation of a BCN-containing amino ac...

Journal ArticleDOI
TL;DR: An alternative method for testing multifaceted constructs, which combines the advantages but avoid the drawbacks of the 2 existing methods and can lead to greater conceptual clarity is recommended.
Abstract: This article recommends an alternative method for testing multifaceted constructs. Researchers often have to choose between two problematic approaches for analyzing multifaceted constructs: the total score approach and the individual score approach. Both approaches can result in conceptual ambiguity. The proposed bifactor model assesses simultaneously the general construct shared by the facets and the specific facets, over and above the general construct. We illustrate the bifactor model by examining the construct of Extraversion as measured by the Revised NEO Personality Inventory (NEO-PI-R; Costa & McCrae, 1992), with two college samples (N = 383 and 378). The analysis reveals that the facets of the NEO-PI-R Extraversion correlate with criteria in opposite directions after partialling out the general construct. The direction of gender differences also varies by facets. Bifactor models combine the advantages but avoid the drawbacks of the 2 existing methods and can lead to greater conceptual clarity.

Journal ArticleDOI
TL;DR: In this article, the symmetry-adapted perturbation theory (SAPT) is used to predict and understand the structure and properties of clusters and condensed phase, and the broadest range of such predictions can be achieved by constructing potential energy surfaces from a set of SAPT interaction energies and using these surfaces in nuclear dynamics calculations.
Abstract: Basic concepts and most recent developments of symmetry-adapted perturbation theory (SAPT) are described. In particular, the methods that combine SAPT with density-functional theory are discussed. It is explained how SAPT allows one to predict and understand the structure and properties of clusters and condensed phase. The broadest range of such predictions can be achieved by constructing potential energy surfaces from a set of SAPT interaction energies and using these surfaces in nuclear dynamics calculations. © 2011 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The spin-orbit coupling interaction has been central in detecting the pure spin current and establishing most of the recent spin-based phenomena, including the inverse spin Hall and the spin Seebeck effects as mentioned in this paper.
Abstract: Platinum (Pt) metal, being nonmagnetic and with a strong spin-orbit coupling interaction, has been central in detecting the pure spin current and establishing most of the recent spin-based phenomena. Magnetotransport measurements, both electrical and thermal, conclusively show strong ferromagnetic characteristics in thin Pt films on the ferromagnetic insulator due to the magnetic proximity effects. The pure spin current phenomena measured by Pt, including the inverse spin Hall and the spin Seebeck effects, are thus contaminated and not exclusively established.

Journal ArticleDOI
TL;DR: This review serves as an excellent literature reference for those working on protein fusion tags and provides summaries of well‐characterized purification strategies that have been used to increase product yields and have widespread application in many areas of biotechnology including drug discovery, therapeutics, and pharmacology.
Abstract: Protein fusion tags are indispensible tools used to improve recombinant protein expression yields, enable protein purification, and accelerate the characterization of protein structure and function. Solubility-enhancing tags, genetically engineered epitopes, and recombinant endoproteases have resulted in a versatile array of combinatorial elements that facilitate protein detection and purification in microbial hosts. In this comprehensive review, we evaluate the most frequently used solubility-enhancing and affinity tags. Furthermore, we provide summaries of well-characterized purification strategies that have been used to increase product yields and have widespread application in many areas of biotechnology including drug discovery, therapeutics, and pharmacology. This review serves as an excellent literature reference for those working on protein fusion tags.

Journal ArticleDOI
TL;DR: In this paper, a renewable route to p-xylene from biomass-derived dimethylfuran and ethylene was investigated with zeolite catalysts, and the observed reaction rates and computed energy barriers were consistent with a two-step reaction that proceeds through a bicyclic adduct prior to dehydration to pxylene.
Abstract: A renewable route to p-xylene from biomass-derived dimethylfuran and ethylene is investigated with zeolite catalysts. Cycloaddition of ethylene and 2,5-dimethylfuran and subsequent dehydration to p-xylene has been achieved with 75% selectivity using H–Y zeolite and an aliphatic solvent at 300 °C. Competitive side reactions include hydrolysis of dimethylfuran to 2,5-hexanedione, alkylation of p-xylene, and polymerization of 2,5-hexanedione. The observed reaction rates and computed energy barriers are consistent with a two-step reaction that proceeds through a bicyclic adduct prior to dehydration to p-xylene. Cycloaddition of ethylene and dimethylfuran occurs without a catalytic active site, but the reaction is promoted by confinement within microporous materials. The presence of Bronsted acid sites catalyzes dehydration of the Diels–Alder cycloadduct (to produce p-xylene and water), and this ultimately causes the rate-determining step to be the initial cycloaddition.

Journal ArticleDOI
TL;DR: NHWAVE as mentioned in this paper is a shock-capturing non-hydrostatic model for simulating wave refraction, diffraction, shoaling, breaking and landslide-generated tsunami in finite water depth.

Journal ArticleDOI
TL;DR: Children in the ABC intervention showed significantly lower rates of disorganized attachment and higher rates of secure attachment relative to the control intervention compared to parents at high risk for maltreatment.
Abstract: Young children who have experienced early adversity are at risk for developing disorganized attachments. The efficacy of Attachment and Biobehavioral Catch-up (ABC), an intervention targeting nurturing care among parents identified as being at risk for neglecting their young children, was evaluated through a randomized clinical trial. Attachment quality was assessed in the Strange Situation for 120 children between 11.7 and 31.9 months of age (M = 19.1, SD = 5.5). Children in the ABC intervention showed significantly lower rates of disorganized attachment (32%) and higher rates of secure attachment (52%) relative to the control intervention (57% and 33%, respectively). These results support the efficacy of the ABC intervention in enhancing attachment quality among parents at high risk for maltreatment.

Journal ArticleDOI
TL;DR: In this paper, the conversion of glucose, furan and maple wood has been investigated over different types of ZSM-5 catalyst in semi-batch and fixed-bed reactors.
Abstract: The conversion of glucose, furan and maple wood has been investigated over different types of ZSM-5 catalyst in semi-batch and fixed-bed reactors. The aromatic yield from glucose conversion goes through a maximum as a function of the framework silica-to-alumina ratio (SAR) of ZSM-5 with an optimum at SAR = 30. This suggests that the concentration of acid sites inside the zeolite is critical for maximizing aromatic yield. Creating hierarchical mesopores within the zeolite slightly increased of coke formation and decreased the formation of the monocyclic aromatics. Mesoporous ZSM-5 was also observed to favor the production of larger alkylated monoaromatics. The selective removal of external acid sites from the ZSM-5 catalysts only slightly increased the catalyst activity but also decreased the selectivity to the desired aromatic products.

Journal ArticleDOI
Rasha Abbasi1, Y. Abdou2, T. Abu-Zayyad3, Markus Ackermann  +266 moreInstitutions (41)
18 Apr 2012-Nature
TL;DR: An upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions is reported, implying either that GRBs are not the only sources of cosmic rays with energies exceeding 1018 electronvolts or that the efficiency of neutrino production is much lower than has been predicted.
Abstract: Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (c-ray bursts) have been proposed as possible candidate sources(1-3). In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and gamma-rays(4). Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux(5-7). Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions(4,8-10). This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

Journal ArticleDOI
TL;DR: Experimental and theoretical investigations reveal that glucose partitions into the zeolite in the pyranose form, ring opens to the acyclic form in the presence of the Lewis acid center, and finally ring closes to yield the furanose product.
Abstract: Isomerization of sugars is used in a variety of industrially relevant processes and in glycolysis. Here, we show that hydrophobic zeolite beta with framework tin or titanium Lewis acid centers isomerizes sugars, e.g., glucose, via reaction pathways that are analogous to those of metalloenzymes. Specifically, experimental and theoretical investigations reveal that glucose partitions into the zeolite in the pyranose form, ring opens to the acyclic form in the presence of the Lewis acid center, isomerizes into the acyclic form of fructose, and finally ring closes to yield the furanose product. The zeolite catalysts provide processing advantages over metalloenzymes such as an ability to work at higher temperatures and in acidic conditions that allow for the isomerization reaction to be coupled with other important conversions.

Journal ArticleDOI
TL;DR: Low-pressure adsorption of carbon dioxide and nitrogen was studied in both acidic and copper-exchanged forms of SSZ-13, a zeolite containing an 8-ring window, and ascribe the CO(2) over N(2), which has important implications for use of zeolites in separations, to differences in binding sites for the two gases.
Abstract: Low-pressure adsorption of carbon dioxide and nitrogen was studied in both acidic and copper-exchanged forms of SSZ-13, a zeolite containing an 8-ring window. Under ideal conditions for industrial separations of CO2 from N2, the ideal adsorbed solution theory selectivity is >70 in each compound. For low gas coverage, the isosteric heat of adsorption for CO2 was found to be 33.1 and 34.0 kJ/mol for Cu- and H-SSZ-13, respectively. From in situ neutron powder diffraction measurements, we ascribe the CO2 over N2 selectivity to differences in binding sites for the two gases, where the primary CO2 binding site is located in the center of the 8-membered-ring pore window. This CO2 binding mode, which has important implications for use of zeolites in separations, has not been observed before and is rationalized and discussed relative to the high selectivity for CO2 over N2 in SSZ-13 and other zeolites containing 8-ring windows.

Journal ArticleDOI
TL;DR: This paper is the first to demonstrate via experiments with cable-driven arm exoskeleton (CAREX) that it is possible to achieve desired forces on the hand, i.e., both pull and push, in any direction as required in neural training.
Abstract: Rehabilitation robots are, currently, being explored for training of neural impaired subjects or for assistance of those with weak limbs. Intensive training of neurally impaired subjects, with quantifiable outcomes, is the eventual goal of these robot exoskeletons. Conventional arm exoskeletons for rehabilitation are bulky and heavy. In recent years, the authors have proposed to make lightweight exoskeletons for rehabilitation by replacing the rigid links of the exoskeleton with lightweight cuffs fixed to the moving limb segments of the human arm. Cables are routed through these cuffs, which are driven by motors, to move the limb segments relative to each other. However, a scientific limitation of a cable-driven system is that each cable can only pull but not push. This paper is the first to demonstrate via experiments with cable-driven arm exoskeleton (CAREX) that it is possible to achieve desired forces on the hand, i.e., both pull and push, in any direction as required in neural training. In this research, an anthropomorphic arm was used to bench test the design and control concepts proposed in CAREX. As described in this paper, CAREX was attached to the limb segments of a five degree-of-freedom anthropomorphic arm instrumented with joint sensors. The cuffs of CAREX were designed to have adjustable cable routing points to optimize the “tensioned” workspace of the anthropomorphic arm. Simulation results of force field for training and rehabilitation of the arm are first presented. Experiments are conducted to show the performance of a CAREX force field controller when human subjects pull the end-effector of the anthropomorphic arm to travel on prescribed paths. The human-exoskeleton interface is also presented at the end of this paper to demonstrate the feasibility of CAREX on human arm.

Journal ArticleDOI
TL;DR: The current pest status and strategies being developed to manage brown marmorated stink bug in the USA are summarized.
Abstract: Since its initial discovery in Allentown, PA, USA, the brown marmorated stink bug (BMSB), Halyomorpha halys (Heteroptera: Pentatomidae) has now officially has been detected in 38 states and the District of Columbia in the USA. Isolated populations also exist in Switzerland and Canada. This Asian species quickly became a major nuisance pest in the mid-Atlantic USA region due to its overwintering behavior of entering structures. BMSB has an extremely wide host range in both its native home and invaded countries where it feeds on numerous tree fruits, vegetables, field crops, ornamental plants, and native vegetation. In 2010, populations exploded causing severe crop losses to apples, peaches, sweet corn, peppers, tomatoes and row crops such as field corn and soybeans in several midAtlantic states. Damaging populations were detected in vineyards, small fruit and ornamentals. Researchers are collaborating to develop management solutions that will complement current integrated pest management programs. This article summarizes the current pest status and strategies being developed to manage BMSB in the USA.

Journal ArticleDOI
TL;DR: A review of microcombustion research can be found in this article, where the authors present technological drivers, applications, devices, and fabrication protocols of microburners, as well as a review of homogeneous, catalytic, homogeneous-heterogeneous and heat recirculating micro-burners.

Journal ArticleDOI
06 Mar 2012-Brain
TL;DR: The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis-Kaplan Executive Function System to the study of high-level cognition in health and disease.
Abstract: Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control, the broader functional networks that support high-level cognition and give rise to general intelligence remain to be well characterized. Here, we investigated the neural substrates of the general factor of intelligence ( g ) and executive function in 182 patients with focal brain damage using voxel-based lesion–symptom mapping. The Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System were used to derive measures of g and executive function, respectively. Impaired performance on these measures was associated with damage to a distributed network of left lateralized brain areas, including regions of frontal and parietal cortex and white matter association tracts, which bind these areas into a coordinated system. The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System to the study of high-level cognition in health and disease. * Abbreviations : D–KEFS : Delis–Kaplan Executive Function System WAIS : Wechsler Adult Intelligence Scale