scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin–Milwaukee

EducationMilwaukee, Wisconsin, United States
About: University of Wisconsin–Milwaukee is a education organization based out in Milwaukee, Wisconsin, United States. It is known for research contribution in the topics: Population & Gravitational wave. The organization has 11839 authors who have published 28034 publications receiving 936438 citations. The organization is also known as: UWM & University of Wisconsin-Milwaukee.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examined the effects of individual and environmental factors on disclosure decisions across life domains, and examined psychological states and outcomes associated with disclosure disconnects and offer directions for future research.
Abstract: This article broadens our perspective of stigma by examining the process of disclosing an invisible stigmatized identity in work and nonwork domains. I present a model that examines the effects of individual and environmental factors on disclosure decisions across life domains. Individuals may disclose their stigma to varying degrees across life domains, and this inconsistency leads to disclosure disconnects. I examine psychological states and outcomes associated with disclosure disconnects and offer directions for future research.

519 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a critical review of the literature to identify issues regarding the measurement of growth, and provide some guidelines to help researchers select appropriate techniques for measuring organizational growth.

518 citations

Journal Article
TL;DR: In this paper, the authors develop a feminist ethics of care that challenges the isolating effects and embodied work conditions of high productivity in compressed time frames, and argue in favor of the slow scholarship movement.
Abstract: The neoliberal university requires high productivity in compressed time frames. Though the neoliberal transformation of the university is well documented, the isolating effects and embodied work conditions of such increasing demands are too rarely discussed. In this article, we develop a feminist ethics of care that challenges these working conditions. Our politics foreground collective action and the contention that good scholarship requires time: to think, write, read, research, analyze, edit, organize, and resist the growing administrative and professional demands that disrupt these crucial processes of intellectual growth and personal freedom. This collectively written article explores alternatives to the fast-paced, metric-oriented neoliberal university through a slow-moving conversation on ways to slow down and claim time for slow scholarship and collective action informed by feminist politics. We examine temporal regimes of the neoliberal university and their embodied effects. We then consider strategies for slowing scholarship with the objective of contributing to the slow scholarship movement. This slowing down represents both a commitment to good scholarship, teaching, and service and a collective feminist ethics of care that challenges the accelerated time and elitism of the neoliberal university. Above all, we argue in favor of the slow scholarship movement and contribute some resistance strategies that foreground collaborative, collective, communal ways forward.

518 citations

Journal ArticleDOI
TL;DR: It is suggested that both fast and slow pathways can be selectively ablated for control of AVNRT and slow pathway ablation, by obviating the risk of AV block, appears to be safer and should be considered as the first approach.
Abstract: BACKGROUND The safety and efficacy of selective fast versus slow pathway ablation using radiofrequency energy and a transcatheter technique in patients with atrioventricular nodal reentrant tachycardia (AVNRT) were evaluated. METHODS AND RESULTS Forty-nine consecutive patients with symptomatic AVNRT were included. There were 37 women and 12 men (mean age, 43 +/- 20 years). The first 16 patients underwent a fast pathway ablation with radiofrequency current applied in the anterior/superior aspect of the tricuspid annulus. The remaining 33 patients initially had their slow pathway targeted at the posterior/inferior aspect of the right interatrial septum. The fast pathway was successfully ablated in the initial 16 patients and in three additional patients after an unsuccessful slow pathway ablation. A mean of 10 +/- 8 radiofrequency pulses were delivered; the last (successful) pulse was at a power of 24 +/- 7 W for a duration of 22 +/- 15 seconds. Four of these 19 patients developed complete atrioventricular (AV) block. In the remaining 15 patients, the post-ablation atrio-His intervals prolonged from 89 +/- 30 to 138 +/- 43 msec (p less than 0.001), whereas the shortest 1:1 AV conduction and effective refractory period of the AV node remained unchanged. Ten patients lost their ventriculoatrial (VA) conduction, and the other five had a significant prolongation of the shortest cycle length of 1:1 VA conduction (280 +/- 35 versus 468 +/- 30 msec, p less than 0.0001). Slow pathway ablation was attempted initially in 33 patients and in another two who developed uncommon AVNRT after successful fast pathway ablation. Of these 35 patients, 32 had no AVNRT inducible after 6 +/- 4 radiofrequency pulses with the last (successful) pulse given at a power of 36 +/- 12 W for a duration of 35 +/- 15 seconds. After successful slow pathway ablation, the shortest cycle length of 1:1 AV conduction prolonged from 295 +/- 44 to 332 +/- 66 msec (p less than 0.0005), the AV nodal effective refractory period increased from 232 +/- 36 to 281 +/- 61 msec (p less than 0.0001), and the atrio-His interval as well as the shortest cycle length of 1:1 VA conduction remained unchanged. No patients developed AV block. Among the last 33 patients who underwent a slow pathway ablation as the initial attempt and a fast pathway ablation only when the former failed, 32 (97%) had successful AVNRT abolition with intact AV conduction. During a mean follow-up of 6.5 +/- 3.0 months, none of the 49 patients had recurrent tachycardia. Forty patients had repeat electrophysiological studies 4-8 weeks after their successful ablation, and AVNRT could not be induced in 39 patients. CONCLUSIONS These data suggest that both fast and slow pathways can be selectively ablated for control of AVNRT: Slow pathway ablation, however, by obviating the risk of AV block, appears to be safer and should be considered as the first approach.

517 citations

Journal ArticleDOI
TL;DR: The current ACWG based on AI planning technologies is described and it is outlined how these technologies can play a crucial role in developing complex application workflows in Grid environments.
Abstract: In this paper we address the problem of automatically generating job workflows for the Grid. These workflows describe the execution of a complex application built from individual application components. In our work we have developed two workflow generators: the first (the Concrete Workflow Generator CWG) maps an abstract workflow defined in terms of application-level components to the set of available Grid resources. The second generator (Abstract and Concrete Workflow Generator, ACWG) takes a wider perspective and not only performs the abstract to concrete mapping but also enables the construction of the abstract workflow based on the available components. This system operates in the application domain and chooses application components based on the application metadata attributes. We describe our current ACWG based on AI planning technologies and outline how these technologies can play a crucial role in developing complex application workflows in Grid environments. Although our work is preliminary, CWG has already been used to map high energy physics applications onto the Grid. In one particular experiment, a set of production runs lasted 7 days and resulted in the generation of 167,500 events by 678 jobs. Additionally, ACWG was used to map gravitational physics workflows, with hundreds of nodes onto the available resources, resulting in 975 tasks, 1365 data transfers and 975 output files produced.

517 citations


Authors

Showing all 11948 results

NameH-indexPapersCitations
Caroline S. Fox155599138951
Mark D. Griffiths124123861335
Benjamin William Allen12480787750
James A. Dumesic11861558935
Richard O'Shaughnessy11446277439
Patrick Brady11044273418
Laura Cadonati10945073356
Stephen Fairhurst10942671657
Benno Willke10950874673
Benjamin J. Owen10835170678
Kenneth H. Nealson10848351100
P. Ajith10737270245
Duncan A. Brown10756768823
I. A. Bilenko10539368801
F. Fidecaro10556974781
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022194
20211,150
20201,189
20191,085
20181,141