scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin–Milwaukee

EducationMilwaukee, Wisconsin, United States
About: University of Wisconsin–Milwaukee is a education organization based out in Milwaukee, Wisconsin, United States. It is known for research contribution in the topics: Population & Gravitational wave. The organization has 11839 authors who have published 28034 publications receiving 936438 citations. The organization is also known as: UWM & University of Wisconsin-Milwaukee.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors search for an isotropic stochastic GWB in the 12.5-yr pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves.
Abstract: We search for an isotropic stochastic gravitational-wave background (GWB) in the 12.5 yr pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. Our analysis finds strong evidence of a stochastic process, modeled as a power law, with common amplitude and spectral slope across pulsars. Under our fiducial model, the Bayesian posterior of the amplitude for an f −2/3 power-law spectrum, expressed as the characteristic GW strain, has median 1.92 × 10−15 and 5%–95% quantiles of 1.37–2.67 × 10−15 at a reference frequency of the Bayes factor in favor of the common-spectrum process versus independent red-noise processes in each pulsar exceeds 10,000. However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with general relativity. We find that the process has neither monopolar nor dipolar correlations, which may arise from, for example, reference clock or solar system ephemeris systematics, respectively. The amplitude posterior has significant support above previously reported upper limits; we explain this in terms of the Bayesian priors assumed for intrinsic pulsar red noise. We examine potential implications for the supermassive black hole binary population under the hypothesis that the signal is indeed astrophysical in nature.

431 citations

Journal ArticleDOI
TL;DR: This review is focused on tests of Einstein’s theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments, and the predicted gravitational-wave observables of modified gravity theories.
Abstract: This review is focused on tests of Einstein’s theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

431 citations

Journal ArticleDOI
TL;DR: NIR-LED photobiomodulation represents an innovative and non-invasive therapeutic approach for the treatment of tissue injury and disease processes in which mitochondrial dysfunction is postulated to play a role including diabetic retinopathy, age-related macular degeneration, Leber's hereditary optic neuropathy and Parkinson's disease.

430 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1237 moreInstitutions (131)
TL;DR: In this paper, the authors place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime of a binary neutron star inspiral.
Abstract: The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polarization content of the gravitational wave signal is studied. The results of all tests performed here show good agreement with GR.

430 citations

Journal ArticleDOI
Ted R. Feldpausch1, Jon Lloyd2, Jon Lloyd1, Simon L. Lewis1, Simon L. Lewis3, Roel J. W. Brienen1, Manuel Gloor1, A. Monteagudo Mendoza, G. Lopez-Gonzalez1, Lindsay F. Banin4, Lindsay F. Banin1, K. Abu Salim5, Kofi Affum-Baffoe6, Miguel Alexiades7, Samuel Almeida8, Iêda Leão do Amaral, Ana Andrade, Luiz E. O. C. Aragão9, A. Araujo Murakami10, Eric Arets11, Luzmila Arroyo10, Timothy R. Baker1, Olaf Bánki12, Nicholas J. Berry13, Nallarett Davila Cardozo14, Jérôme Chave15, James A. Comiskey16, Esteban Álvarez, A. A. R. de Oliveira, A. Di Fiore17, Gloria Djagbletey18, Tomas F. Domingues19, Terry L. Erwin20, Philip M. Fearnside, Mabiane Batista França, Maria Aparecida Freitas8, Niro Higuchi, Yoshiko Iida21, E. M. Jimenez22, Abdul Rahman Kassim23, Timothy J. Killeen24, William F. Laurance2, Jon C. Lovett25, Yadvinder Malhi26, Beatriz Schwantes Marimon27, Ben Hur Marimon-Junior27, Eddie Lenza27, Andrew R. Marshall28, Casimiro Mendoza, Daniel J. Metcalfe29, Edward T. A. Mitchard13, David A. Neill, Bruce Walker Nelson, Reuben Nilus, Euler Melo Nogueira, Alexander Parada10, Kelvin S.-H. Peh30, A. Peña Cruz, M. C. Peñuela22, Nigel C. A. Pitman31, Adriana Prieto22, Carlos A. Quesada, Fredy Ramírez14, Hirma Ramírez-Angulo32, Jan Reitsma, Agustín Rudas22, Gustavo Saiz33, Rafael de Paiva Salomão8, Michael P. Schwarz1, Natalino Silva, Javier E. Silva-Espejo, Marcos Silveira34, Bonaventure Sonké35, Juliana Stropp, Hermann Taedoumg35, Sylvester Tan, H. ter Steege36, John Terborgh31, Mireia Torello-Raventos2, G. M. F. van der Heijden37, G. M. F. van der Heijden38, R. Vásquez, Emilio Vilanova32, Vincent A. Vos, Lee J. T. White39, Simon Willcock1, Hannsjorg Woell, Oliver L. Phillips1 
TL;DR: In this article, the effect of tree height (H) on tropical forest biomass and carbon storage estimates was investigated using data from 20 sites across four continents, and the results showed that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions.
Abstract: . Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4) to 8.0 Mg ha−1 (−2.5 to 23.0). For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation.

426 citations


Authors

Showing all 11948 results

NameH-indexPapersCitations
Caroline S. Fox155599138951
Mark D. Griffiths124123861335
Benjamin William Allen12480787750
James A. Dumesic11861558935
Richard O'Shaughnessy11446277439
Patrick Brady11044273418
Laura Cadonati10945073356
Stephen Fairhurst10942671657
Benno Willke10950874673
Benjamin J. Owen10835170678
Kenneth H. Nealson10848351100
P. Ajith10737270245
Duncan A. Brown10756768823
I. A. Bilenko10539368801
F. Fidecaro10556974781
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022194
20211,150
20201,189
20191,085
20181,141