scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin–Milwaukee

EducationMilwaukee, Wisconsin, United States
About: University of Wisconsin–Milwaukee is a education organization based out in Milwaukee, Wisconsin, United States. It is known for research contribution in the topics: Population & Gravitational wave. The organization has 11839 authors who have published 28034 publications receiving 936438 citations. The organization is also known as: UWM & University of Wisconsin-Milwaukee.


Papers
More filters
Journal ArticleDOI
Seiji Kawamura1, Masaki Ando2, Takashi Nakamura3, K. Tsubono2, Takahiro Tanaka3, I. Funaki, Naoki Seto1, Kenji Numata4, Shuichi Sato1, Kunihito Ioka, Nobuyuki Kanda5, T. Takashima, Kazuhiro Agatsuma2, Tomotada Akutsu2, Koh-suke Aoyanagi6, Koji Arai1, Y. Arase2, Akito Araya2, Hideki Asada7, Yoichi Aso8, Takeshi Chiba9, Toshikazu Ebisuzaki, Motohiro Enoki10, Yoshiharu Eriguchi2, Masa-Katsu Fujimoto1, Ryuichi Fujita11, Mitsuhiro Fukushima1, Toshifumi Futamase12, Katsuhiko Ganzu3, Tomohiro Harada13, Tatsuaki Hashimoto, Kazuhiro Hayama14, Wataru Hikida11, Yoshiaki Himemoto15, Hisashi Hirabayashi16, Takashi Hiramatsu2, Feng-Lei Hong17, Hideyuki Horisawa18, Mizuhiko Hosokawa19, Kiyotomo Ichiki2, Takeshi Ikegami17, Kaiki Taro Inoue20, Koji Ishidoshiro2, Hideki Ishihara5, Takehiko Ishikawa, Hideharu Ishizaki1, Hiroyuki Ito19, Yousuke Itoh21, S. Kamagasako2, Nobuki Kawashima20, Fumiko Kawazoe22, Hiroyuki Kirihara2, Naoko Kishimoto, Kenta Kiuchi6, Shiho Kobayashi23, Kazunori Kohri24, Hiroyuki Koizumi2, Yasufumi Kojima25, Keiko Kokeyama22, Wataru Kokuyama2, Kei Kotake1, Yoshihide Kozai, Hideaki Kudoh2, Hiroo Kunimori19, H. Kuninaka, Kazuaki Kuroda2, Keiichi Maeda6, Hideo Matsuhara, Yasushi Mino26, Osamu Miyakawa26, Shinji Miyoki2, Mutsuko Y. Morimoto, T. Morioka2, Toshiyuki Morisawa3, Shigenori Moriwaki2, Shinji Mukohyama2, Mitsuru Musha27, Shigeo Nagano19, Isao Naito, N. Nakagawa2, Kouji Nakamura1, Hiroyuki Nakano28, Ken-ichi Nakao5, Shinichi Nakasuka2, Yoshinori Nakayama29, E. Nishida22, Kazutaka Nishiyama, Atsushi J. Nishizawa3, Yoshito Niwa3, Masatake Ohashi2, Naoko Ohishi1, Masashi Ohkawa30, Akira Okutomi2, Kouji Onozato2, K. Oohara30, Norichika Sago31, Motoyuki Saijo31, Masa-aki Sakagami3, Shin-ichiro Sakai, Shihori Sakata22, Misao Sasaki3, Takashi Sato30, Masaru Shibata2, Hisa-aki Shinkai32, Kentaro Somiya33, Hajime Sotani34, Naoshi Sugiyama35, Yudai Suwa2, Hideyuki Tagoshi11, Kakeru Takahashi2, Tadayuki Takahashi, Hirotaka Takahashi36, Ryuichi Takahashi35, Akiteru Takamori2, Tetsushi Takano, Keisuke Taniguchi37, Atsushi Taruya2, Hiroyuki Tashiro3, M. Tokuda5, Masao Tokunari2, Morio Toyoshima19, Shinji Tsujikawa, Yoshiki Tsunesada38, Ken-ichi Ueda27, Masayoshi Utashima16, Hiroshi Yamakawa3, Kazuhiro Yamamoto1, Toshitaka Yamazaki1, Jun'ichi Yokoyama2, Chul-Moon Yoo3, Shijun Yoshida12, Taizoh Yoshino 
TL;DR: DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) as discussed by the authors is the future Japanese space gravitational wave antenna, which aims at detecting various kinds of gravitational waves between 1 mHz and 100 Hz frequently enough to open a new window of observation for gravitational wave astronomy.
Abstract: DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. It aims at detecting various kinds of gravitational waves between 1 mHz and 100 Hz frequently enough to open a new window of observation for gravitational wave astronomy. The pre-conceptual design of DECIGO consists of three drag-free satellites, 1000 km apart from each other, whose relative displacements are measured by a Fabry–Perot Michelson interferometer. We plan to launch DECIGO in 2024 after a long and intense development phase, including two pathfinder missions for verification of required technologies.

342 citations

Journal ArticleDOI
TL;DR: This paper uses data from a sample of individuals with intra-articular fractures of the lower extremity from the University of Alabama at Birmingham's Injury Control Research Center to demonstrate the use of MLM and its advantages in analyzing longitudinal data.
Abstract: The use and quality of longitudinal research designs has increased over the past two decades, and new approaches for analyzing longitudinal data, including multi-level modeling (MLM) and latent growth modeling (LGM), have been developed. The purpose of this paper is to demonstrate the use of MLM and its advantages in analyzing longitudinal data. Data from a sample of individuals with intra-articular fractures of the lower extremity from the University of Alabama at Birmingham’s Injury Control Research Center is analyzed using both SAS PROC MIXED and SPSS MIXED. We start our presentation with a discussion of data preparation for MLM analyses. We then provide example analyses of different growth models, including a simple linear growth model and a model with a time-invariant covariate, with interpretation for all the parameters in the models. More complicated growth models with different between- and within-individual covariance structures and nonlinear models are discussed. Finally, information related to MLM analysis such as online resources is provided at the end of the paper.

341 citations

Journal ArticleDOI
TL;DR: The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo, and represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction.
Abstract: This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as "photobiomodulation," uses light in the far-red to near-infrared region of the spectrum (630-1000 nm) and modulates numerous cellular functions. Positive effects of NIR-light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction.

340 citations

Journal ArticleDOI
TL;DR: This paper applied causal modeling techniques to the Lent, Brown, and Hackett (1994) model of person, contextual, and experiential factors affecting career-related choice behavior, and found that the effects of family context and person input variables on learning experiences, self-efficacy, outcome expectancies, interests, and goals were examined.

340 citations

Journal ArticleDOI
TL;DR: Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorption and subsequent oxidation.
Abstract: CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration.

339 citations


Authors

Showing all 11948 results

NameH-indexPapersCitations
Caroline S. Fox155599138951
Mark D. Griffiths124123861335
Benjamin William Allen12480787750
James A. Dumesic11861558935
Richard O'Shaughnessy11446277439
Patrick Brady11044273418
Laura Cadonati10945073356
Stephen Fairhurst10942671657
Benno Willke10950874673
Benjamin J. Owen10835170678
Kenneth H. Nealson10848351100
P. Ajith10737270245
Duncan A. Brown10756768823
I. A. Bilenko10539368801
F. Fidecaro10556974781
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022194
20211,150
20201,189
20191,085
20181,141