scispace - formally typeset
Search or ask a question
Institution

University of Hawaii at Manoa

EducationHonolulu, Hawaii, United States
About: University of Hawaii at Manoa is a education organization based out in Honolulu, Hawaii, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 13693 authors who have published 25161 publications receiving 1023924 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a depth-integrated, non-hydrostatic model with a semi-implicit finite difference scheme was proposed to model weakly dispersive wave propagation, transformation, breaking, and run-up.
Abstract: This paper describes the formulation, verification, and validation of a depth-integrated, non-hydrostatic model with a semi-implicit, finite difference scheme. The formulation builds on the nonlinear shallow-water equations and utilizes a non-hydrostatic pressure term to describe weakly dispersive waves. A momentum-conserved advection scheme enables modeling of breaking waves without the aid of analytical solutions for bore approximation or empirical equations for energy dissipation. An upwind scheme extrapolates the free-surface elevation instead of the flow depth to provide the flux in the momentum and continuity equations. This greatly improves the model stability, which is essential for computation of energetic breaking waves and run-up. The computed results show very good agreement with laboratory data for wave propagation, transformation, breaking, and run-up. Since the numerical scheme to the momentum and continuity equations remains explicit, the implicit non-hydrostatic solution is directly applicable to existing nonlinear shallow-water models. Copyright © 2008 John Wiley & Sons, Ltd.

270 citations

Journal ArticleDOI
TL;DR: The software, called GMTSAR, is an open-source (GNU General Public License) InSAR processing system designed for users familiar with Generic Mapping Tools and requires installation of GMT and Network Common Data Format and supports several fast Fourier transform libraries.
Abstract: [1] Over the past 15 years, software for processing interferometric synthetic aperture radar (InSAR) data into maps of surface deformation has been developed and refined. The InSAR technique is commonly used to investigate deformation associated with earthquakes, volcanoes, withdrawal of crustal fluids, and coherent ice motions [Massonnet and Feigl, 1998]. The software, called Generic Mapping Tools Synthetic Aperture Radar (GMTSAR), is an open-source (GNU General Public License) InSAR processing system designed for users familiar with Generic Mapping Tools (GMT) [Wessel and Smith, 1998]. The GMTSAR code is written in the C programing language and will run on any UNIX® computer. It requires installation of GMT and Network Common Data Format (NetCDF) and supports several fast Fourier transform libraries.

269 citations

Journal ArticleDOI
TL;DR: In this article, the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-shooter spectrograph.
Abstract: The mass accretion rate, Ṁ acc , is a key quantity for the understanding of the physical processes governing the evolution of accretion discs around young low-mass ( M ⋆ ≲ 2.0 M ⊙ ) stars and substellar objects (YSOs). We present here the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, L acc , increases with the stellar luminosity, L ⋆ , with an overall slope of ~1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below L ⋆ ≈ 0.1 L ⊙ , where L acc is always lower than 0.01 L ⋆ . We argue that the L acc − L ⋆ slope is not due to observational biases, but is a true property of the Lupus YSOs. The log Ṁ acc – log M ⋆ correlation shows a statistically significant evidence of a break, with a steeper relation for M ⋆ ≲ 0.2 M ⊙ and a flatter slope for higher masses. The bimodality of the Ṁ acc – M ⋆ relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo-evaporation and planet formation during the YSO’s lifetime, may also lead to disc dispersal on different timescales depending on the stellar mass. The sample studied here more than doubles the number of YSOs with homogeneously and simultaneously determined L acc and luminosity, L line , of many permitted emission lines. Hence, we also refined the empirical relationships between L acc and L line on a more solid statistical basis.

269 citations

Journal ArticleDOI
TL;DR: It is reported that TRPM2, in addition to its role as a plasma membrane channel, also functions as a Ca2+-release channel activated by intracellular ADPR in a lysosomal compartment, which is critically linked to hydrogen peroxide–induced β cell death.
Abstract: TRPM2 is a Ca 2+ -permeable cation channel that is specifically activated by adenosine diphosphoribose (ADPR). Channel activation in the plasma membrane leads to Ca 2+ influx and has been linked to apoptotic mechanisms. The primary agonist, ADPR, is produced both extra- and intracellularly and causes increases in intracellular calcium concentration ([Ca 2+ ] i ), but the mechanisms involved are not understood. Using short interfering RNA and a knockout mouse, we report that TRPM2, in addition to its role as a plasma membrane channel, also functions as a Ca 2+ -release channel activated by intracellular ADPR in a lysosomal compartment. We show that both functions of TRPM2 are critically linked to hydrogen peroxide–induced β cell death. Additionally, extracellular ADPR production by the ectoenzyme CD38 from its substrates NAD + (nicotinamide adenine dinucleotide) or cADPR causes IP 3 -dependent Ca 2+ release via P2Y and adenosine receptors. Thus, ADPR and TRPM2 represent multimodal signaling elements regulating Ca 2+ mobilization in β cells through membrane depolarization, Ca 2+ influx, and release of Ca 2+ from intracellular stores.

269 citations

Journal ArticleDOI
TL;DR: It is concluded that current functional predictions based on phylogeny significantly underestimate the extent of sulfate/sulfite reduction across Earth’s ecosystems.
Abstract: A critical step in the biogeochemical cycle of sulfur on Earth is microbial sulfate reduction, yet organisms from relatively few lineages have been implicated in this process. Previous studies using functional marker genes have detected abundant, novel dissimilatory sulfite reductases (DsrAB) that could confer the capacity for microbial sulfite/sulfate reduction but were not affiliated with known organisms. Thus, the identity of a significant fraction of sulfate/sulfite-reducing microbes has remained elusive. Here we report the discovery of the capacity for sulfate/sulfite reduction in the genomes of organisms from 13 bacterial and archaeal phyla, thereby more than doubling the number of microbial phyla associated with this process. Eight of the 13 newly identified groups are candidate phyla that lack isolated representatives, a finding only possible given genomes from metagenomes. Organisms from Verrucomicrobia and two candidate phyla, Candidatus Rokubacteria and Candidatus Hydrothermarchaeota, contain some of the earliest evolved dsrAB genes. The capacity for sulfite reduction has been laterally transferred in multiple events within some phyla, and a key gene potentially capable of modulating sulfur metabolism in associated cells has been acquired by putatively symbiotic bacteria. We conclude that current functional predictions based on phylogeny significantly underestimate the extent of sulfate/sulfite reduction across Earth's ecosystems. Understanding the prevalence of this capacity is integral to interpreting the carbon cycle because sulfate reduction is often coupled to turnover of buried organic carbon. Our findings expand the diversity of microbial groups associated with sulfur transformations in the environment and motivate revision of biogeochemical process models based on microbial community composition.

269 citations


Authors

Showing all 13867 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Steven N. Blair165879132929
Qiang Zhang1611137100950
Jack M. Guralnik14845383701
Thomas J. Smith1401775113919
James A. Richardson13636375778
Donna Neuberg13581072653
Jian Zhou128300791402
Eric F. Bell12863172542
Jorge Luis Rodriguez12883473567
Bin Wang126222674364
Nicholas J. Schork12558762131
Matthew Jones125116196909
Anthony F. Jorm12479867120
Adam G. Riess118363117310
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

93% related

University of California, San Diego
204.5K papers, 12.3M citations

92% related

Johns Hopkins University
249.2K papers, 14M citations

91% related

Cornell University
235.5K papers, 12.2M citations

91% related

Columbia University
224K papers, 12.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022244
20211,111
20201,164
20191,151
20181,154