scispace - formally typeset
Search or ask a question

Showing papers on "Cytotoxic T cell published in 2006"


Journal ArticleDOI
11 May 2006-Nature
TL;DR: It is shown that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ Treg cells induced by TGF-β, and the data demonstrate a dichotomy in thegeneration of pathogenic (TH17) T cells that induce autoimmunity and regulatory (Foxp3+) T Cells that inhibit autoimmune tissue injury.
Abstract: On activation, T cells undergo distinct developmental pathways, attaining specialized properties and effector functions. T-helper (T(H)) cells are traditionally thought to differentiate into T(H)1 and T(H)2 cell subsets. T(H)1 cells are necessary to clear intracellular pathogens and T(H)2 cells are important for clearing extracellular organisms. Recently, a subset of interleukin (IL)-17-producing T (T(H)17) cells distinct from T(H)1 or T(H)2 cells has been described and shown to have a crucial role in the induction of autoimmune tissue injury. In contrast, CD4+CD25+Foxp3+ regulatory T (T(reg)) cells inhibit autoimmunity and protect against tissue injury. Transforming growth factor-beta (TGF-beta) is a critical differentiation factor for the generation of T(reg) cells. Here we show, using mice with a reporter introduced into the endogenous Foxp3 locus, that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ T(reg) cells induced by TGF-beta. We also demonstrate that IL-23 is not the differentiation factor for the generation of T(H)17 cells. Instead, IL-6 and TGF-beta together induce the differentiation of pathogenic T(H)17 cells from naive T cells. Our data demonstrate a dichotomy in the generation of pathogenic (T(H)17) T cells that induce autoimmunity and regulatory (Foxp3+) T cells that inhibit autoimmune tissue injury.

6,643 citations


Journal ArticleDOI
22 Sep 2006-Cell
TL;DR: It is shown that the orphan nuclear receptor RORgammat is the key transcription factor that orchestrates the differentiation of this effector cell lineage of proinflammatory T helper cells and its potential as a therapeutic target in inflammatory diseases is highlighted.

4,616 citations


Journal ArticleDOI
01 Feb 2006-Immunity
TL;DR: The data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation ofIL-17-producing T cells.

3,711 citations


Journal ArticleDOI
09 Feb 2006-Nature
TL;DR: In this article, the authors analyzed genes expressed in functionally impaired virus-specific CD8 T cells present in mice chronically infected with lymphocytic choriomeningitis virus (LCMV), and compared these with the gene profile of functional memory CD8T cells.
Abstract: Functional impairment of antigen-specific T cells is a defining characteristic of many chronic infections, but the underlying mechanisms of T-cell dysfunction are not well understood. To address this question, we analysed genes expressed in functionally impaired virus-specific CD8 T cells present in mice chronically infected with lymphocytic choriomeningitis virus (LCMV), and compared these with the gene profile of functional memory CD8 T cells. Here we report that PD-1 (programmed death 1; also known as Pdcd1) was selectively upregulated by the exhausted T cells, and that in vivo administration of antibodies that blocked the interaction of this inhibitory receptor with its ligand, PD-L1 (also known as B7-H1), enhanced T-cell responses. Notably, we found that even in persistently infected mice that were lacking CD4 T-cell help, blockade of the PD-1/PD-L1 inhibitory pathway had a beneficial effect on the 'helpless' CD8 T cells, restoring their ability to undergo proliferation, secrete cytokines, kill infected cells and decrease viral load. Blockade of the CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) inhibitory pathway had no effect on either T-cell function or viral control. These studies identify a specific mechanism of T-cell exhaustion and define a potentially effective immunological strategy for the treatment of chronic viral infections.

3,567 citations


Journal ArticleDOI
21 Sep 2006-Nature
TL;DR: The data indicate that the immunoregulatory PD-1/PD-L1 pathway is operative during a persistent viral infection in humans, and define a reversible defect in HIV-specific T-cell function.
Abstract: Functional impairment of T cells is characteristic of many chronic mouse and human viral infections. The inhibitory receptor programmed death 1 (PD-1; also known as PDCD1), a negative regulator of activated T cells, is markedly upregulated on the surface of exhausted virus-specific CD8 T cells in mice. Blockade of this pathway using antibodies against the PD ligand 1 (PD-L1, also known as CD274) restores CD8 T-cell function and reduces viral load. To investigate the role of PD-1 in a chronic human viral infection, we examined PD-1 expression on human immunodeficiency virus (HIV)-specific CD8 T cells in 71 clade-C-infected people who were naive to anti-HIV treatments, using ten major histocompatibility complex (MHC) class I tetramers specific for frequently targeted epitopes. Here we report that PD-1 is significantly upregulated on these cells, and expression correlates with impaired HIV-specific CD8 T-cell function as well as predictors of disease progression: positively with plasma viral load and inversely with CD4 T-cell count. PD-1 expression on CD4 T cells likewise showed a positive correlation with viral load and an inverse correlation with CD4 T-cell count, and blockade of the pathway augmented HIV-specific CD4 and CD8 T-cell function. These data indicate that the immunoregulatory PD-1/PD-L1 pathway is operative during a persistent viral infection in humans, and define a reversible defect in HIV-specific T-cell function. Moreover, this pathway of reversible T-cell impairment provides a potential target for enhancing the function of exhausted T cells in chronic HIV infection.

2,525 citations


Journal ArticleDOI
TL;DR: It is found that the IL-7 receptor (CD127) is down-regulated on a subset of CD4+ T cells in peripheral blood and can be used to quantitate T reg cell subsets in individuals with type 1 diabetes supporting the use of CD127 as a biomarker for human T reg cells.
Abstract: Regulatory T (T reg) cells are critical regulators of immune tolerance. Most T reg cells are defined based on expression of CD4, CD25, and the transcription factor, FoxP3. However, these markers have proven problematic for uniquely defining this specialized T cell subset in humans. We found that the IL-7 receptor (CD127) is down-regulated on a subset of CD4+ T cells in peripheral blood. We demonstrate that the majority of these cells are FoxP3+, including those that express low levels or no CD25. A combination of CD4, CD25, and CD127 resulted in a highly purified population of T reg cells accounting for significantly more cells that previously identified based on other cell surface markers. These cells were highly suppressive in functional suppressor assays. In fact, cells separated based solely on CD4 and CD127 expression were anergic and, although representing at least three times the number of cells (including both CD25+CD4+ and CD25−CD4+ T cell subsets), were as suppressive as the “classic” CD4+CD25hi T reg cell subset. Finally, we show that CD127 can be used to quantitate T reg cell subsets in individuals with type 1 diabetes supporting the use of CD127 as a biomarker for human T reg cells.

2,506 citations


Journal ArticleDOI
TL;DR: Photodynamic therapy uses non-toxic photosensitizers and harmless visible light in combination with oxygen to produce cytotoxic reactive oxygen species that kill malignant cells by apoptosis and/or necrosis, shut down the tumour microvasculature and stimulate the host immune system.
Abstract: Photodynamic therapy (PDT) uses non-toxic photosensitizers and harmless visible light in combination with oxygen to produce cytotoxic reactive oxygen species that kill malignant cells by apoptosis and/or necrosis, shut down the tumour microvasculature and stimulate the host immune system. In contrast to surgery, radiotherapy and chemotherapy that are mostly immunosuppressive, PDT causes acute inflammation, expression of heat-shock proteins, invasion and infiltration of the tumour by leukocytes, and might increase the presentation of tumour-derived antigens to T cells.

2,150 citations


Journal ArticleDOI
15 Jun 2006-Blood
TL;DR: The quality of the HIV-specific CD8(+) T-cell functional response serves as an immune correlate of HIV disease progression and a potential qualifying factor for evaluation of HIV vaccine efficacy.

1,825 citations


Journal ArticleDOI
TL;DR: Cell surface expression of CD127 allows accurate estimation of T reg cell numbers and isolation of pure populations for in vitro studies and should contribute to the understanding of regulatory abnormalities in immunopathic diseases.
Abstract: Abnormalities in CD4+CD25+Foxp3+ regulatory T (T reg) cells have been implicated in susceptibility to allergic, autoimmune, and immunoinflammatory conditions. However, phenotypic and functional assessment of human T reg cells has been hampered by difficulty in distinguishing between CD25-expressing activated and regulatory T cells. Here, we show that expression of CD127, the α chain of the interleukin-7 receptor, allows an unambiguous flow cytometry–based distinction to be made between CD127lo T reg cells and CD127hi conventional T cells within the CD25+CD45RO+RA− effector/memory and CD45RA+RO− naive compartments in peripheral blood and lymph node. In healthy volunteers, peripheral blood CD25+CD127lo cells comprised 6.35 ± 0.26% of CD4+ T cells, of which 2.05 ± 0.14% expressed the naive subset marker CD45RA. Expression of FoxP3 protein and the CD127lo phenotype were highly correlated within the CD4+CD25+ population. Moreover, both effector/memory and naive CD25+CD127lo cells manifested suppressive activity in vitro, whereas CD25+CD127hi cells did not. Cell surface expression of CD127 therefore allows accurate estimation of T reg cell numbers and isolation of pure populations for in vitro studies and should contribute to our understanding of regulatory abnormalities in immunopathic diseases.

1,517 citations


Journal ArticleDOI
TL;DR: Blocking PD-1 engagement to its ligand (PD-L1) enhanced the capacity of HIV-specific CD8+ T cells to survive and proliferate and led to an increased production of cytokines and cytotoxic molecules in response to cognate antigen.
Abstract: The engagement of programmed death 1 (PD-1) to its ligands, PD-L1 and PD-L21,2,3,4, inhibits proliferation and cytokine production mediated by antibodies to CD3 (refs. 5,6,7). Blocking the PD-1–PD-L1 pathway in mice chronically infected with lymphocytic choriomeningitis virus restores the capacity of exhausted CD8+ T cells to undergo proliferation, cytokine production and cytotoxic activity and, consequently, results in reduced viral load8. During chronic HIV infection, HIV-specific CD8+ T cells are functionally impaired9,10,11, showing a reduced capacity to produce cytokines and effector molecules as well as an impaired capacity to proliferate12,13,14,15. Here, we found that PD-1 was upregulated on HIV-specific CD8+ T cells; PD-1 expression levels were significantly correlated both with viral load and with the reduced capacity for cytokine production and proliferation of HIV-specific CD8+ T cells. Notably, cytomegalovirus (CMV)-specific CD8+ T cells from the same donors did not upregulate PD-1 and maintained the production of high levels of cytokines. Blocking PD-1 engagement to its ligand (PD-L1) enhanced the capacity of HIV-specific CD8+ T cells to survive and proliferate and led to an increased production of cytokines and cytotoxic molecules in response to cognate antigen. The accumulation of HIV-specific dysfunctional CD8+ T cells in the infected host could prevent the renewal of a functionally competent HIV-specific CD8+ repertoire.

1,484 citations


Journal ArticleDOI
TL;DR: Th17 is a powerful therapeutic target for the bone destruction associated with T cell activation and the interleukin (IL)-23–IL-17 axis, rather than the IL-12–IFN-γ axis, is critical for the onset phase of autoimmune arthritis.
Abstract: In autoimmune arthritis, traditionally classified as a T helper (Th) type 1 disease, the activation of T cells results in bone destruction mediated by osteoclasts, but how T cells enhance osteoclastogenesis despite the anti-osteoclastogenic effect of interferon (IFN)-γ remains to be elucidated. Here, we examine the effect of various Th cell subsets on osteoclastogenesis and identify Th17, a specialized inflammatory subset, as an osteoclastogenic Th cell subset that links T cell activation and bone resorption. The interleukin (IL)-23–IL-17 axis, rather than the IL-12–IFN-γ axis, is critical not only for the onset phase, but also for the bone destruction phase of autoimmune arthritis. Thus, Th17 is a powerful therapeutic target for the bone destruction associated with T cell activation.

Journal ArticleDOI
TL;DR: In this paper, the effect of irradiation on antigen presentation by MHC class I molecules was studied and it was shown that immunotherapy is successful in eradicating a murine colon adenocarcinoma only when preceded by radiotherapy of the tumor tissue.
Abstract: Radiotherapy is one of the most successful cancer therapies. Here the effect of irradiation on antigen presentation by MHC class I molecules was studied. Cell surface expression of MHC class I molecules was increased for many days in a radiation dose-dependent manner as a consequence of three responses. Initially, enhanced degradation of existing proteins occurred which resulted in an increased intracellular peptide pool. Subsequently, enhanced translation due to activation of the mammalian target of rapamycin pathway resulted in increased peptide production, antigen presentation, as well as cytotoxic T lymphocyte recognition of irradiated cells. In addition, novel proteins were made in response to γ-irradiation, resulting in new peptides presented by MHC class I molecules, which were recognized by cytotoxic T cells. We show that immunotherapy is successful in eradicating a murine colon adenocarcinoma only when preceded by radiotherapy of the tumor tissue. Our findings indicate that directed radiotherapy can improve the efficacy of tumor immunotherapy.

Journal ArticleDOI
TL;DR: Evidence is provided that PD-L 1 expression on parenchymal cells rather than hematopoietic cells protects against autoimmune diabetes and point to a novel role for PD-1–PD-L1 interactions in mediating tissue tolerance.
Abstract: Programmed death 1 (PD-1), an inhibitory receptor expressed on activated lymphocytes, regulates tolerance and autoimmunity. PD-1 has two ligands: PD-1 ligand 1 (PD-L1), which is expressed broadly on hematopoietic and parenchymal cells, including pancreatic islet cells; and PD-L2, which is restricted to macrophages and dendritic cells. To investigate whether PD-L1 and PD-L2 have synergistic or unique roles in regulating T cell activation and tolerance, we generated mice lacking PD-L1 and PD-L2 (PD-L1/PD-L2−/− mice) and compared them to mice lacking either PD-L. PD-L1 and PD-L2 have overlapping functions in inhibiting interleukin-2 and interferon-γ production during T cell activation. However, PD-L1 has a unique and critical role in controlling self-reactive T cells in the pancreas. Our studies with bone marrow chimeras demonstrate that PD-L1/PD-L2 expression only on antigen-presenting cells is insufficient to prevent the early onset diabetes that develops in PD-L1/PD-L2−/− non-obese diabetic mice. PD-L1 expression in islets protects against immunopathology after transplantation of syngeneic islets into diabetic recipients. PD-L1 inhibits pathogenic self-reactive CD4+ T cell–mediated tissue destruction and effector cytokine production. These data provide evidence that PD-L1 expression on parenchymal cells rather than hematopoietic cells protects against autoimmune diabetes and point to a novel role for PD-1–PD-L1 interactions in mediating tissue tolerance.

Journal ArticleDOI
28 Sep 2006-Nature
TL;DR: It is reported that the cyclin-dependent kinase inhibitor p16INK4a accumulates and modulates specific age-associated HSC functions, and may ameliorate the physiological impact of ageing on stem cells and thereby improve injury repair in aged tissue.
Abstract: Stem-cell ageing is thought to contribute to altered tissue maintenance and repair. Older humans experience increased bone marrow failure and poorer haematologic tolerance of cytotoxic injury. Haematopoietic stem cells (HSCs) in older mice have decreased per-cell repopulating activity, self-renewal and homing abilities, myeloid skewing of differentiation, and increased apoptosis with stress. Here we report that the cyclin-dependent kinase inhibitor p16INK4a, the level of which was previously noted to increase in other cell types with age, accumulates and modulates specific age-associated HSC functions. Notably, in the absence of p16INK4a, HSC repopulating defects and apoptosis were mitigated, improving the stress tolerance of cells and the survival of animals in successive transplants, a stem-cell-autonomous tissue regeneration model. Inhibition of p16INK4a may ameliorate the physiological impact of ageing on stem cells and thereby improve injury repair in aged tissue.

Journal ArticleDOI
TL;DR: Evidence is provided that the short-term, combined effects of tryptophan deprivation and tryPTophan catabolites result in GCN2 kinase-dependent down-regulation of the TCR ζ-chain in murine CD8+ T cells.
Abstract: Tryptophan catabolism is a tolerogenic effector system in regulatory T cell function, yet the general mechanisms whereby tryptophan catabolism affects T cell responses remain unclear. We provide evidence that the short-term, combined effects of tryptophan deprivation and tryptophan catabolites result in GCN2 kinase-dependent down-regulation of the TCR zeta-chain in murine CD8+ T cells. TCR zeta down-regulation can be demonstrated in vivo and is associated with an impaired cytotoxic effector function in vitro. The longer-term effects of tryptophan catabolism include the emergence of a regulatory phenotype in naive CD4+CD25- T cells via TGF-beta induction of the forkhead transcription factor Foxp3. Such converted cells appear to be CD25+, CD69-, CD45RBlow, CD62L+, CTLA-4+, BTLAlow and GITR+, and are capable of effective control of diabetogenic T cells when transferred in vivo. Thus, both tryptophan starvation and tryptophan catabolites contribute to establishing a regulatory environment affecting CD8+ as well as CD4+ T cell function, and not only is tryptophan catabolism an effector mechanism of tolerance, but it also results in GCN2-dependent generation of autoimmune-preventive regulatory T cells.

Journal ArticleDOI
27 Jul 2006-Nature
TL;DR: It is shown that IL-23 is an important molecular link between tumour-promoting pro-inflammatory processes and the failure of the adaptive immune surveillance to infiltrate tumours.
Abstract: Chronic inflammation has long been associated with increased incidence of malignancy and similarities in the regulatory mechanisms have been suggested for more than a century. Infiltration of innate immune cells, elevated activities of matrix metalloproteases and increased angiogenesis and vasculature density are a few examples of the similarities between chronic and tumour-associated inflammation. Conversely, the elimination of early malignant lesions by immune surveillance, which relies on the cytotoxic activity of tumour-infiltrating T cells or intra-epithelial lymphocytes, is thought to be rate-limiting for the risk to develop cancer. Here we show a molecular connection between the rise in tumour-associated inflammation and a lack of tumour immune surveillance. Expression of the heterodimeric cytokine interleukin (IL)-23, but not of its close relative IL-12, is increased in human tumours. Expression of these cytokines antagonistically regulates local inflammatory responses in the tumour microenvironment and infiltration of intra-epithelial lymphocytes. Whereas IL-12 promotes infiltration of cytotoxic T cells, IL-23 promotes inflammatory responses such as upregulation of the matrix metalloprotease MMP9, and increases angiogenesis but reduces CD8 T-cell infiltration. Genetic deletion or antibody-mediated elimination of IL-23 leads to increased infiltration of cytotoxic T cells into the transformed tissue, rendering a protective effect against chemically induced carcinogenesis. Finally, transplanted tumours are growth-restricted in hosts depleted for IL-23 or in IL-23-receptor-deficient mice. Although many strategies for immune therapy of cancer attempt to stimulate an immune response against solid tumours, infiltration of effector cells into the tumour tissue often appears to be a critical hurdle. We show that IL-23 is an important molecular link between tumour-promoting pro-inflammatory processes and the failure of the adaptive immune surveillance to infiltrate tumours.

Journal ArticleDOI
TL;DR: PD-1 is a major regulator of apoptosis that can impact the frequency of antiviral T cells in chronic infections such as HIV, and could be manipulated to improve HIV-specific CD8+ T cell numbers, but possibly not all functions in vivo.
Abstract: Here, we report on the expression of programmed death (PD)-1 on human virus-specific CD8+ T cells and the effect of manipulating signaling through PD-1 on the survival, proliferation, and cytokine function of these cells. PD-1 expression was found to be low on naive CD8+ T cells and increased on memory CD8+ T cells according to antigen specificity. Memory CD8+ T cells specific for poorly controlled chronic persistent virus (HIV) more frequently expressed PD-1 than memory CD8+ T cells specific for well-controlled persistent virus (cytomegalovirus) or acute (vaccinia) viruses. PD-1 expression was independent of maturational markers on memory CD8+ T cells and was not directly associated with an inability to produce cytokines. Importantly, the level of PD-1 surface expression was the primary determinant of apoptosis sensitivity of virus-specific CD8+ T cells. Manipulation of PD-1 led to changes in the ability of the cells to survive and expand, which, over several days, affected the number of cells expressing cytokines. Therefore, PD-1 is a major regulator of apoptosis that can impact the frequency of antiviral T cells in chronic infections such as HIV, and could be manipulated to improve HIV-specific CD8+ T cell numbers, but possibly not all functions in vivo.

Journal ArticleDOI
01 Sep 2006-Immunity
TL;DR: The capture of apoptotic cells by mDCs and of nucleic acid-containing immune complexes by plasmacytoid DCs and B cells amplifies the autoimmune reaction leading to disease manifestations.

Journal ArticleDOI
TL;DR: Although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.
Abstract: The A2A adenosine receptor (A2AR) has been shown to be a critical and nonredundant negative regulator of immune cells in protecting normal tissues from inflammatory damage. We hypothesized that A2AR also protects cancerous tissues by inhibiting incoming antitumor T lymphocytes. Here we confirm this hypothesis by showing that genetic deletion of A2AR in the host resulted in rejection of established immunogenic tumors in ≈60% of A2AR-deficient mice with no rejection observed in control WT mice. The use of antagonists, including caffeine, or targeting the A2 receptors by siRNA pretreatment of T cells improved the inhibition of tumor growth, destruction of metastases, and prevention of neovascularization by antitumor T cells. The data suggest that effects of A2AR are T cell autonomous. The inhibition of antitumor T cells via their A2AR in the adenosine-rich tumor microenvironment may explain the paradoxical coexistence of tumors and antitumor immune cells in some cancer patients (the “Hellstrom paradox”). We propose to target the hypoxia→adenosine→A2AR pathway as a cancer immunotherapy strategy to prevent the inhibition of antitumor T cells in the tumor microenvironment. The same strategy may prevent the premature termination of immune response and improve the vaccine-induced development of antitumor and antiviral T cells. The observations of autoimmunity during melanoma rejection in A2AR-deficient mice suggest that A2AR in T cells is also important in preventing autoimmunity. Thus, although using the hypoxia→adenosine→A2AR pathway inhibitors may improve antitumor immunity, the recruitment of this pathway by selective drugs is expected to attenuate the autoimmune tissue damage.

Journal ArticleDOI
TL;DR: Two-photon laser-scanning microscopy is used to analyze lymph node priming of diabetogenic T cells and to delineate the mechanisms of Treg cell control of autoimmunity in vivo, supporting the idea that dendritic cells are central to T Reg cell function in vivo.
Abstract: The in vivo mechanism of regulatory T cell (Treg cell) function in controlling autoimmunity remains controversial. Here we have used two-photon laser-scanning microscopy to analyze lymph node priming of diabetogenic T cells and to delineate the mechanisms of Treg cell control of autoimmunity in vivo. Islet antigen–specific CD4+CD25− T helper cells (TH cells) and Treg cells swarmed and arrested in the presence of autoantigens. These TH cell activities were progressively inhibited in the presence of increasing numbers of Treg cells. There were no detectable stable associations between Treg and TH cells during active suppression. In contrast, Treg cells directly interacted with dendritic cells bearing islet antigen. Such persistent Treg cell–dendritic cell contacts preceded the inhibition of TH cell activation by dendritic cells, supporting the idea that dendritic cells are central to Treg cell function in vivo.

Journal ArticleDOI
14 Jul 2006-Cell
TL;DR: A specialization of the phagocytic pathway of DCs is described that allows a fine control of antigen processing and plays a critical role in conferring DCs the ability to function as specialized phagocytes adapted to process antigens rather than kill pathogens.

Journal ArticleDOI
TL;DR: These suppressor cells challenge the current idea that tumor-conditioned immunosuppressive monocytes/macrophages are alternatively activated and show how the inflammatory response elicited by tumors had detrimental effects on the adaptive immune system and suggest novel approaches for the treatment of tumor-induced immune dysfunctions.
Abstract: Active suppression of tumor-specific T lymphocytes can limit the efficacy of immune surveillance and immunotherapy. While tumor-recruited CD11b+ myeloid cells are known mediators of tumor-associated immune dysfunction, the true nature of these suppressive cells and the fine biochemical pathways governing their immunosuppressive activity remain elusive. Here we describe a population of circulating CD11b+IL-4 receptor alpha+ (CD11b+IL-4Ralpha+), inflammatory-type monocytes that is elicited by growing tumors and activated by IFN-gamma released from T lymphocytes. CD11b+IL-4Ralpha+ cells produced IL-13 and IFN-gamma and integrated the downstream signals of these cytokines to trigger the molecular pathways suppressing antigen-activated CD8+ T lymphocytes. Analogous immunosuppressive circuits were active in CD11b+ cells present within the tumor microenvironment. These suppressor cells challenge the current idea that tumor-conditioned immunosuppressive monocytes/macrophages are alternatively activated. Moreover, our data show how the inflammatory response elicited by tumors had detrimental effects on the adaptive immune system and suggest novel approaches for the treatment of tumor-induced immune dysfunctions.

Journal ArticleDOI
TL;DR: Forkhead winged-helix transcription factor Foxp3 serves as the dedicated mediator of the genetic program governing CD25+CD4+ regulatory T cell (T(R)) development and function in mice and the relationship between FOXP3 expression and human T(R) development is addressed.
Abstract: Forkhead winged-helix transcription factor Foxp3 serves as the dedicated mediator of the genetic program governing CD25+CD4+ regulatory T cell (Tr) development and function in mice. In humans, its role in mediating Tr development has been controversial. Furthermore, the fate of Tr precursors in FOXP3 deficiency has yet to be described. Making use of flow cytometric detection of human FOXP3, we have addressed the relationship between FOXP3 expression and human Tr development. Unlike murine Foxp3− T cells, a small subset of human CD4+ and CD8+ T cells transiently up-regulated FOXP3 upon in vitro stimulation. Induced FOXP3, however, did not alter cell-surface phenotype or suppress T helper 1 cytokine expression. Furthermore, only ex vivo FOXP3+ Tr cells persisted after prolonged culture, suggesting that induced FOXP3 did not activate a Tr developmental program in a significant number of cells. FOXP3 flow cytometry was also used to further characterize several patients exhibiting symptoms of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) with or without FOXP3 mutations. Most patients lacked FOXP3-expressing cells, further solidifying the association between FOXP3 deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Interestingly, one patient bearing a FOXP3 mutation enabling expression of stable FOXP3mut protein exhibited FOXP3mut-expressing cells among a subset of highly activated CD4+ T cells. This observation raises the possibility that the severe autoimmunity in FOXP3 deficiency can be attributed, in part, to aggressive T helper cells that have developed from Tr precursors.

Journal ArticleDOI
13 Apr 2006-Nature
TL;DR: It is demonstrated that after immunization but before antigen recognition, naive CD8+ T cells in immunogen-draining lymph nodes upregulate the chemokine receptor CCR5, permitting these cells to be attracted to sites of antigen-specific dendritic cell–CD4+ T cell interaction where the cognate chemokines CCL3 and CCL4 are produced.
Abstract: CD8+ T cells have a crucial role in resistance to pathogens and can kill malignant cells; however, some critical functions of these lymphocytes depend on helper activity provided by a distinct population of CD4+ T cells. Cooperation between these lymphocyte subsets involves recognition of antigens co-presented by the same dendritic cell, but the frequencies of such antigen-bearing cells early in an infection and of the relevant naive T cells are both low. This suggests that an active mechanism facilitates the necessary cell-cell associations. Here we demonstrate that after immunization but before antigen recognition, naive CD8+ T cells in immunogen-draining lymph nodes upregulate the chemokine receptor CCR5, permitting these cells to be attracted to sites of antigen-specific dendritic cell-CD4+ T cell interaction where the cognate chemokines CCL3 and CCL4 (also known as MIP-1alpha and MIP-1beta) are produced. Interference with this actively guided recruitment markedly reduces the ability of CD4+ T cells to promote memory CD8+ T-cell generation, indicating that an orchestrated series of differentiation events drives nonrandom cell-cell interactions within lymph nodes, optimizing CD8+ T-cell immune responses involving the few antigen-specific precursors present in the naive repertoire.

Journal ArticleDOI
TL;DR: It is demonstrated that, in naive mice, as well as during Mycobacterium tuberculosis infection, IL-17 production is primarily from γδ T cells and other non-CD4+CD8+ cells, rather than CD4 T cells.
Abstract: IL-17 is a cytokine produced by T cells in response to IL-23. Recent data support a new subset of CD4 Th cells distinct from Th1 or Th2 cells that produce IL-17 and may contribute to inflammation. In this study, we demonstrate that, in naive mice, as well as during Mycobacterium tuberculosis infection, IL-17 production is primarily from γδ T cells and other non-CD4 + CD8 + cells, rather than CD4 T cells. The production of IL-17 by these cells is stimulated by IL-23 alone, and strongly induced by the cytokines, including IL-23, produced by M. tuberculosis -infected dendritic cells. IL-23 is present in the lungs early in infection and the IL-17-producing cells, such as γδ T cells, may represent a central innate protective response to pulmonary infection.

Journal ArticleDOI
01 Sep 2006-Immunity
TL;DR: In this paper, the role of transforming growth factor-beta (TGF-beta) in inhibiting T cell functions has been studied with dominant negative TGF-β receptor transgenic models.

Journal ArticleDOI
TL;DR: TR play a role in controlling the immune response against pancreatic ductal carcinoma from the premalignant stage to established cancer, and a high prevalence of TR seems to be a marker of poor prognosis.
Abstract: Purpose: Antitumor immune response changes drastically during the progression of cancers. Established cancers often escape from the host immune system, although specific immune surveillance operates in the early stages of tumorigenesis in murine models. CD4 + CD25 + regulatory T cells (T R ) play a central role in self-tolerance and suppress effective antitumor immune responses. The aim of this study was to investigate the clinical significance and roles of T R in the progression and multistep carcinogenesis of pancreatic ductal adenocarcinoma. Experimental Design: We raised anti-FOXP3 antibodies and used them in immunohistochemical studies of the prevalence of FOXP3 + CD4 + CD25 + T R in the CD4 + T cells, which infiltrated in tissue and draining lymph nodes of 198 pancreatic ductal adenocarcinomas, their premalignant lesions (84 lesions of pancreatic intraepithelial neoplasias and 51 intraductal papillary-mucinous neoplasms), and 15 nonneoplastic pancreatic lesions. Results: The prevalence of T R was significantly increased in the ductal adenocarcinomas compared with that in the stroma of nonneoplastic inflammation ( P R was significantly correlated with certain clinicopathologic factors. A better prognosis was observed in patients with a low prevalence of T R , and this was independent of other survival factors ( P + TIA-1 + cytotoxic T cells in pancreatic ducts was marked in low-grade premalignant lesions but diminished during the progression of both pancreatic intraepithelial neoplasias and intraductal papillary-mucinous neoplasms. Conversely, the prevalence of T R increased significantly during the progression of premalignant lesions. Conclusions: T R play a role in controlling the immune response against pancreatic ductal carcinoma from the premalignant stage to established cancer. In pancreatic ductal carcinoma, a high prevalence of T R seems to be a marker of poor prognosis.

Journal ArticleDOI
01 Jul 2006-Immunity
TL;DR: After skin infection with herpes simplex virus, cytotoxic T lymphocyte activation required MHC class I-restricted presentation by nonmigratory CD8(+) DCs rather than skin-derived DCs, which supports the argument for initial transport of antigen by migratingDCs, followed by its transfer to the lymphoid-resident DCs for presentation and CTL priming.

Journal ArticleDOI
TL;DR: It is found that f-CNT 3, which instead possesses reduced solubility and forms mainly stable water suspensions, preserved lymphocytes' functionality while provoking secretion of proinflammatory cytokines by macrophages.
Abstract: Carbon nanotubes are emerging as innovative tools in nanobiotechnology. However, their toxic effects on environment and health have become an issue of strong concern. In the present study, we address the impact of functionalized carbon nanotubes (f-CNTs) on cells of the immune system. We have prepared two types of f-CNTs, following the 1,3-dipolar cycloaddition reaction (f-CNTs 1 and 2) and the oxidation/amidation treatment (f-CNTs 3 and 4), respectively. We have found that both types of f-CNTs are uptaken by B and T lymphocytes as well as macrophages in vitro, without affecting cell viability. Subsequently, the functionality of the different cells was analyzed carefully. We discovered that f-CNT 1, which is highly water soluble, did not influence the functional activity of immunoregulatory cells. f-CNT 3, which instead possesses reduced solubility and forms mainly stable water suspensions, preserved lymphocytes' functionality while provoking secretion of proinflammatory cytokines by macrophages.

Journal ArticleDOI
TL;DR: There are T cells within normal, noninflamed skin that most likely conduct immunosurveillance and are implicated in the development of psoriasis and it is estimated that 98% of CLA+ effector memory T cells are resident in normal skin under resting conditions.
Abstract: There are T cells within normal, noninflamed skin that most likely conduct immunosurveillance and are implicated in the development of psoriasis. We isolated T cells from normal human skin using both established and novel methods. Skin resident T cells expressed high levels of CLA, CCR4, and CCR6, and a subset expressed CCR8 and CXCR6. Skin T cells had a remarkably diverse TCR repertoire and were mostly Th1 memory effector cells with smaller subsets of central memory, Th2, and functional T regulatory cells. We isolated a surprising number of nonexpanded T cells from normal skin. To validate this finding, we counted T cells in sections of normal skin and determined that there are approximately 1 x 10(6) T cells/cm(2) normal skin and an estimated 2 x 10(10) T cells in the entire skin surface, nearly twice the number of T cells in the circulation. Moreover, we estimate that 98% of CLA(+) effector memory T cells are resident in normal skin under resting conditions. These findings demonstrate that there is a large pool of memory T cells in normal skin that can initiate and perpetuate immune reactions in the absence of T cell recruitment from the blood.