scispace - formally typeset
Journal ArticleDOI

Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers

Leigh T. Canham
- 03 Sep 1990 - 
- Vol. 57, Iss: 10, pp 1046-1048
Reads0
Chats0
TLDR
In this paper, free standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography using electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers.
Abstract
Indirect evidence is presented that free‐standing Si quantum wires can be fabricated without the use of epitaxial deposition or lithography. The novel approach uses electrochemical and chemical dissolution steps to define networks of isolated wires out of bulk wafers. Mesoporous Si layers of high porosity exhibit visible (red) photoluminescence at room temperature, observable with the naked eye under <1 mW unfocused (<0.1 W cm−2) green or blue laser line excitation. This is attributed to dramatic two‐dimensional quantum size effects which can produce emission far above the band gap of bulk crystalline Si.

read more

Citations
More filters
Journal ArticleDOI

Silicon nanoparticles: applications in cell biology and medicine.

TL;DR: This review describes the synthesis, physical properties, surface functionalization, and biological applications of silicon nanoparticles and compares them against current technologies, such as fluorescent organic dyes and heavy metal chalcogenide-based quantum dots.
Journal ArticleDOI

Porous silicon chemical sensors and biosensors: A review

TL;DR: The use of porous silicon (PSi) as a sensor for detection of various analytes is reviewed in this article, where the authors provide a critical assessment of the development of PSi as a promising material for chemical and biosensing applications.
Journal ArticleDOI

Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media

TL;DR: In this paper, a review of spatially confined, non-equilibrium physics in nanoporous media is presented. And a particular emphasis is put on texture formation upon crystallisation in nanopore-confined condensed matter, a topic both of high fundamental interest and of increasing nanotechnological importance.
Journal ArticleDOI

Review of porous silicon preparation and its application for lithium-ion battery anodes

TL;DR: In this review, the merits of using porous silicon for anodes through both theoretical and experimental study are discussed and recent progress in the preparation of porous silicon through the template-assisted approach and the non-template approach are highlighted.
References
More filters
Journal ArticleDOI

Electrolytic shaping of germanium and silicon

TL;DR: In this article, the properties of electrolyte-semiconductor barriers are described, with emphasis on germanium, and the use of these barriers in localizing electrolytic etching is discussed.
Journal ArticleDOI

Unusually low surface-recombination velocity on silicon and germanium surfaces.

TL;DR: It is found that a standard, widespread, chemical-preparation method for silicon, oxidation followed by an HF etch, results in a surface which from an electronic point of view is remarkably inactive, which has implications for the ultimate efficiency of silicon solar cells.
Journal ArticleDOI

Infrared spectroscopy of Si(111) and Si(100) surfaces after HF treatment: Hydrogen termination and surface morphology

TL;DR: In this paper, multiple internal infrared reflection spectroscopy has been used to identify the chemical nature of chemically oxidized and subsequently HF stripped silicon surfaces, and these very inert surfaces are found to be almost completely covered by atomic hydrogen.
Journal ArticleDOI

Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces.

TL;DR: In this article, the authors measured hydrogen desorption from monohydride and dihydride species on crystalline-silicon surfaces using transmission Fourier-transform infrared (FTIR) spectroscopy.
Related Papers (5)