scispace - formally typeset
U

Uday S. Evani

Researcher at Baylor College of Medicine

Publications -  25
Citations -  18105

Uday S. Evani is an academic researcher from Baylor College of Medicine. The author has contributed to research in topics: Genomics & 1000 Genomes Project. The author has an hindex of 16, co-authored 24 publications receiving 12274 citations. Previous affiliations of Uday S. Evani include Indiana University & Stanford University.

Papers
More filters
Journal ArticleDOI

A global reference for human genetic variation.

Adam Auton, +517 more
- 01 Oct 2015 - 
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.

A global reference for human genetic variation

Adam Auton, +479 more
TL;DR: The 1000 Genomes Project as mentioned in this paper provided a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and reported the completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole genome sequencing, deep exome sequencing and dense microarray genotyping.
Journal ArticleDOI

Genome-wide Analyses Identify KIF5A as a Novel ALS Gene.

Aude Nicolas, +435 more
- 21 Mar 2018 - 
TL;DR: Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia and Charcot-Marie-Tooth type 2.
Journal ArticleDOI

Integrative Annotation of Variants from 1092 Humans: Application to Cancer Genomics

TL;DR: In this article, the authors used patterns of polymorphisms in functionally annotated regions in 1092 humans to identify deleterious variants; then, they experimentally validated candidates, finding regions particularly sensitive to mutations and variants that are disruptive because of mechanistic effects on transcription-factor binding.
Journal ArticleDOI

Haplotype-resolved diverse human genomes and integrated analysis of structural variation.

Peter Ebert, +73 more
- 02 Apr 2021 - 
TL;DR: In this article, the authors present 64 assembled haplotypes from 32 diverse human genomes, which integrate all forms of genetic variation, even across complex loci, and identify 107,590 structural variants (SVs), of which 68% were not discovered with short-read sequencing.