scispace - formally typeset
Journal ArticleDOI

Gut Microbiota in Health and Disease

TLDR
The advances in modeling and analysis of gut microbiota will further the authors' knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Abstract
Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this "organ" has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.

read more

Citations
More filters
Journal ArticleDOI

Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis

TL;DR: An overview of the intestinal microbiota is provided and the cell biology of Paneth cells is described, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis.
Journal ArticleDOI

Habitat degradation impacts black howler monkey ( Alouatta pigra ) gastrointestinal microbiomes

TL;DR: High throughput microbial 16S ribosomal RNA gene sequencing indicated that diversity, richness and composition of howler GI microbiomes varied with host habitat in relation to diet, and a reduction in the number of genes related to butyrate production and hydrogen metabolism in the microbiomes of howlers occupying suboptimal habitats may impact host health.
Journal ArticleDOI

Secretory IgA's Complex Roles in Immunity and Mucosal Homeostasis in the Gut

TL;DR: In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria.
Journal ArticleDOI

Exposure to a Social Stressor Alters the Structure of the Intestinal Microbiota: Implications for Stressor-Induced Immunomodulation

TL;DR: Stressor exposure significantly changed the community structure of the microbiota, particularly when the microbiota were assessed immediately after stressor exposure, and remarkably also suggest that the microbiota are necessary for stressor-induced increases in circulating cytokines.
References
More filters
Journal ArticleDOI

An obesity-associated gut microbiome with increased capacity for energy harvest

TL;DR: It is demonstrated through metagenomic and biochemical analyses that changes in the relative abundance of the Bacteroidetes and Firmicutes affect the metabolic potential of the mouse gut microbiota and indicates that the obese microbiome has an increased capacity to harvest energy from the diet.
Journal ArticleDOI

Microbial ecology: Human gut microbes associated with obesity

TL;DR: It is shown that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet.
Journal ArticleDOI

Diversity of the human intestinal microbial flora.

TL;DR: A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms, and significant intersubject variability and differences between stool and mucosa community composition were discovered.
Journal ArticleDOI

A core gut microbiome in obese and lean twins

TL;DR: The faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers are characterized to address how host genotype, environmental exposure and host adiposity influence the gut microbiome.
Related Papers (5)