scispace - formally typeset
Journal ArticleDOI

Gut Microbiota in Health and Disease

TLDR
The advances in modeling and analysis of gut microbiota will further the authors' knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Abstract
Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this "organ" has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.

read more

Citations
More filters
Journal ArticleDOI

Site-specific programming of the host epithelial transcriptome by the gut microbiota

TL;DR: This study indicates that the microbiota engage different regulatory networks to alter host gene expression in a particular niche, and induced a more rapid response in the colon than in the ileum.
Journal ArticleDOI

Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis.

TL;DR: Current knowledge on the developmental crosstalk between the intestinal microbiota and the HPA axis is summarized, providing a basis for understanding the development and bidirectional communication between these two essential systems in human functioning.
Journal ArticleDOI

Role of nutrition and microbiota in susceptibility to inflammatory bowel diseases.

TL;DR: Diet may be even more important to disease susceptibility than the levels of individual foods or nutrients, and various dietary regimes may modify disease symptoms, in part through their actions on the host microbiota.
Journal ArticleDOI

The interaction between smoking, alcohol and the gut microbiome.

TL;DR: The exact cause-effect relation between alcohol and smoking and changes of the gastrointestinal microbiome needs further exploration with high throughput methodologies, and controlled studies are necessary to define the role of microbiome modulation on the immune response and systemic activation of pro-inflammatory pathways.
Journal ArticleDOI

Gut to brain interaction in Autism Spectrum Disorders: a randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters

TL;DR: The effects of supplementation with a probiotic mixture (Vivomixx®) in ASD children not only on specific GI symptoms, but also on the core deficits of the disorder, on cognitive and language development, and on brain function and connectivity are determined.
References
More filters
Journal ArticleDOI

An obesity-associated gut microbiome with increased capacity for energy harvest

TL;DR: It is demonstrated through metagenomic and biochemical analyses that changes in the relative abundance of the Bacteroidetes and Firmicutes affect the metabolic potential of the mouse gut microbiota and indicates that the obese microbiome has an increased capacity to harvest energy from the diet.
Journal ArticleDOI

Microbial ecology: Human gut microbes associated with obesity

TL;DR: It is shown that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet.
Journal ArticleDOI

Diversity of the human intestinal microbial flora.

TL;DR: A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms, and significant intersubject variability and differences between stool and mucosa community composition were discovered.
Journal ArticleDOI

A core gut microbiome in obese and lean twins

TL;DR: The faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers are characterized to address how host genotype, environmental exposure and host adiposity influence the gut microbiome.
Related Papers (5)