scispace - formally typeset
Search or ask a question

Showing papers by "Helmholtz Centre for Environmental Research - UFZ published in 2016"


Journal ArticleDOI
08 Dec 2016-Nature
TL;DR: There are well-documented declines in some wild and managed pollinators in several regions of the world, however, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.
Abstract: Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.

1,121 citations


Journal ArticleDOI
TL;DR: It is proposed that focusing only on instrumental or intrinsic values may fail to resonate with views on personal and collective well-being, or “what is right,” with regard to nature and the environment, and it is time to engage seriously with a third class of values, one with diverse roots and current expressions: relational values.
Abstract: A cornerstone of environmental policy is the debate over protecting nature for humans’ sake (instrumental values) or for nature’s (intrinsic values) (1). We propose that focusing only on instrumental or intrinsic values may fail to resonate with views on personal and collective well-being, or “what is right,” with regard to nature and the environment. Without complementary attention to other ways that value is expressed and realized by people, such a focus may inadvertently promote worldviews at odds with fair and desirable futures. It is time to engage seriously with a third class of values, one with diverse roots and current expressions: relational values. By doing so, we reframe the discussion about environmental protection, and open the door to new, potentially more productive policy approaches.

977 citations


Journal ArticleDOI
09 Sep 2016-Science
TL;DR: This work identifies six biological mechanisms that commonly shape responses to climate change yet are too often missing from current predictive models and prioritize the types of information needed to inform each of these mechanisms, and suggests proxies for data that are missing or difficult to collect.
Abstract: BACKGROUND As global climate change accelerates, one of the most urgent tasks for the coming decades is to develop accurate predictions about biological responses to guide the effective protection of biodiversity. Predictive models in biology provide a means for scientists to project changes to species and ecosystems in response to disturbances such as climate change. Most current predictive models, however, exclude important biological mechanisms such as demography, dispersal, evolution, and species interactions. These biological mechanisms have been shown to be important in mediating past and present responses to climate change. Thus, current modeling efforts do not provide sufficiently accurate predictions. Despite the many complexities involved, biologists are rapidly developing tools that include the key biological processes needed to improve predictive accuracy. The biggest obstacle to applying these more realistic models is that the data needed to inform them are almost always missing. We suggest ways to fill this growing gap between model sophistication and information to predict and prevent the most damaging aspects of climate change for life on Earth. ADVANCES On the basis of empirical and theoretical evidence, we identify six biological mechanisms that commonly shape responses to climate change yet are too often missing from current predictive models: physiology; demography, life history, and phenology; species interactions; evolutionary potential and population differentiation; dispersal, colonization, and range dynamics; and responses to environmental variation. We prioritize the types of information needed to inform each of these mechanisms and suggest proxies for data that are missing or difficult to collect. We show that even for well-studied species, we often lack critical information that would be necessary to apply more realistic, mechanistic models. Consequently, data limitations likely override the potential gains in accuracy of more realistic models. Given the enormous challenge of collecting this detailed information on millions of species around the world, we highlight practical methods that promote the greatest gains in predictive accuracy. Trait-based approaches leverage sparse data to make more general inferences about unstudied species. Targeting species with high climate sensitivity and disproportionate ecological impact can yield important insights about future ecosystem change. Adaptive modeling schemes provide a means to target the most important data while simultaneously improving predictive accuracy. OUTLOOK Strategic collections of essential biological information will allow us to build generalizable insights that inform our broader ability to anticipate species’ responses to climate change and other human-caused disturbances. By increasing accuracy and making uncertainties explicit, scientists can deliver improved projections for biodiversity under climate change together with characterizations of uncertainty to support more informed decisions by policymakers and land managers. Toward this end, a globally coordinated effort to fill data gaps in advance of the growing climate-fueled biodiversity crisis offers substantial advantages in efficiency, coverage, and accuracy. Biologists can take advantage of the lessons learned from the Intergovernmental Panel on Climate Change’s development, coordination, and integration of climate change projections. Climate and weather projections were greatly improved by incorporating important mechanisms and testing predictions against global weather station data. Biology can do the same. We need to adopt this meteorological approach to predicting biological responses to climate change to enhance our ability to mitigate future changes to global biodiversity and the services it provides to humans.

755 citations


Journal ArticleDOI
25 Aug 2016-Nature
TL;DR: It is demonstrated that primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services.
Abstract: Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.

486 citations


Journal ArticleDOI
TL;DR: In this article, a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets is presented.
Abstract: Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

436 citations


Journal ArticleDOI
TL;DR: The effects of different fertilization regimes (mineral, organic and combined mineral and organic fertilization), carried out for more than a century, on the structure and activity of the soil microbiome are reported.
Abstract: Soil management is fundamental to all agricultural systems and fertilization practices have contributed substantially to the impressive increases in food production. Despite the pivotal role of soil microorganisms in agro-ecosystems, we still have a limited understanding of the complex response of the soil microbiota to organic and mineral fertilization in the very long-term. Here we report the effects of different fertilization regimes (mineral, organic and combined mineral and organic fertilization), carried out for more than a century, on the structure and activity of the soil microbiome. Organic matter content, nutrient concentrations and microbial biomass carbon were significantly increased by mineral, and even more strongly by organic fertilization. Pyrosequencing revealed significant differences between the structures of bacterial and fungal soil communities associated to each fertilization regime. Organic fertilization increased bacterial diversity, and stimulated microbial groups (Firmicutes, Proteobacteria and Zygomycota) that are known to prefer nutrient-rich environments, and that are involved in the degradation of complex organic compounds. In contrast, soils not receiving manure harbored distinct microbial communities enriched in oligotrophic organisms adapted to nutrient-limited environments, as Acidobacteria. The fertilization regime also affected the relative abundances of plant beneficial and detrimental microbial taxa, which may influence productivity and stability of the agroecosystem. As expected, the activity of microbial exoenzymes involved in carbon, nitrogen and phosphorous mineralization were enhanced by both types of fertilization. However, in contrast to comparable studies, the highest chitinase and phosphatase activities were observed in the solely mineral fertilized soil. Interestingly, these two enzymes showed also a particular high biomass-specific activities and a strong negative relation with soil pH. As many soil parameters are known to change slowly, the particularity of unchanged fertilization treatments since 1902 allows a profound assessment of linkages between management and abiotic as well as biotic soil parameters. Our study revealed that pH and TOC were the majors, while nitrogen and phosphorous pools were minors, drivers for structure and activity of the soil microbial community. Due to the long-term treatments studied, our findings likely represent permanent and stable, rather than transient, responses of soil microbial communities to fertilization.

430 citations


Journal ArticleDOI
TL;DR: In this article, the authors focus on definitions of green economy and related concepts and an evaluation of these concepts against the criterion of strong and weak sustainability, and develop a framework that shows the capacity of the green economy concepts, approaches and tools to support the transition towards sustainability.

417 citations


Journal ArticleDOI
16 Dec 2016-Science
TL;DR: Applying a 1-kilometer buffer to all roads is presented and a global map of roadless areas and an assessment of their status, quality, and extent of coverage by protected areas are presented to halt their continued loss.
Abstract: Roads fragment landscapes and trigger human colonization and degradation of ecosystems, to the detriment of biodiversity and ecosystem functions. The planet’s remaining large and ecologically important tracts of roadless areas sustain key refugia for biodiversity and provide globally relevant ecosystem services. Applying a 1-kilometer buffer to all roads, we present a global map of roadless areas and an assessment of their status, quality, and extent of coverage by protected areas. About 80% of Earth’s terrestrial surface remains roadless, but this area is fragmented into ~600,000 patches, more than half of which are

369 citations


Journal ArticleDOI
30 Nov 2016-Nature
TL;DR: It is shown that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity.
Abstract: Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.

345 citations


Journal ArticleDOI
TL;DR: In this paper, the authors assess green space availability in 299 EU cities according to land use and a population data grid and conclude that UGS availability is an important indicator to navigate urban complexity to improve human health and wellbeing but is only one component of the intricate social-ecological interactions within cities.

341 citations


Journal ArticleDOI
01 Sep 2016-Nature
TL;DR: In this paper, the authors show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited.
Abstract: Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.

Journal ArticleDOI
01 Feb 2016-Gut
TL;DR: Clear experimental evidence is provided for the causal role of gut bacterial dysbiosis in the development of chronic ileal inflammation with subsequent failure of Paneth cell function.
Abstract: Objectives Dysbiosis of the intestinal microbiota is associated with Crohn9s disease (CD). Functional evidence for a causal role of bacteria in the development of chronic small intestinal inflammation is lacking. Similar to human pathology, TNF deltaARE mice develop a tumour necrosis factor (TNF)-driven CD-like transmural inflammation with predominant ileal involvement. Design Heterozygous TNF deltaARE mice and wildtype (WT) littermates were housed under conventional (CONV), specific pathogen-free (SPF) and germ-free (GF) conditions. Microbial communities were analysed by high-throughput 16S ribosomal RNA gene sequencing. Metaproteomes were measured using LC-MS. Temporal and spatial resolution of disease development was followed after antibiotic treatment and transfer of microbial communities into GF mice. Granulocyte infiltration and Paneth cell function was assessed by immunofluorescence and gene expression analysis. Results GF-TNF deltaARE mice were free of inflammation in the gut and antibiotic treatment of CONV-TNF deltaARE mice attenuated ileitis but not colitis, demonstrating that disease severity and location are microbiota-dependent. SPF-TNF deltaARE mice developed distinct ileitis-phenotypes associated with gradual loss of antimicrobial defence. 16S analysis and metaproteomics revealed specific compositional and functional alterations of bacterial communities in inflamed mice. Transplantation of disease-associated but not healthy microbiota transmitted CD-like ileitis to GF-TNF deltaARE recipients and triggered loss of lysozyme and cryptdin-2 expression. Monoassociation of GF-TNF deltaARE mice with the human CD-related Escherichia coli LF82 did not induce ileitis. Conclusions We provide clear experimental evidence for the causal role of gut bacterial dysbiosis in the development of chronic ileal inflammation with subsequent failure of Paneth cell function.

Journal ArticleDOI
TL;DR: In this article, the authors advocate for the adherence of a plural valuation culture and its establishment as a common practice, by contesting and complementing ineffective and discriminatory single-value approaches.
Abstract: We are increasingly confronted with severe social and economic impacts of environmental degradation all over the world. From a valuation perspective, environmental problems and conflicts originate from trade-offs between values. The urgency and importance to integrate nature's diverse values in decisions and actions stand out more than ever. Valuation, in its broad sense of ‘assigning importance’, is inherently part of most decisions on natural resource and land use. Scholars from different traditions -while moving from heuristic interdisciplinary debate to applied transdisciplinary science- now acknowledge the need for combining multiple disciplines and methods to represent the diverse set of values of nature. This growing group of scientists and practitioners share the ambition to explore how combinations of ecological, socio-cultural and economic valuation tools can support real-life resource and land use decision-making. The current sustainability challenges and the ineffectiveness of single-value approaches to offer relief demonstrate that continuing along a single path is no option. We advocate for the adherence of a plural valuation culture and its establishment as a common practice, by contesting and complementing ineffective and discriminatory single-value approaches. In policy and decision contexts with a willingness to improve sustainability, integrated valuation approaches can be blended in existing processes, whereas in contexts of power asymmetries or environmental conflicts, integrated valuation can promote the inclusion of diverse values through action research and support the struggle for social and environmental justice. The special issue and this editorial synthesis paper bring together lessons from pioneer case studies and research papers, synthesizing main challenges and setting out priorities for the years to come for the field of integrated valuation.

Journal ArticleDOI
TL;DR: In this article, a framework for mapping and assessing the relationships between ecosystem services (ES) capacity, flow and demand with a focus on the identification of unsatisfied demand is presented.

Journal ArticleDOI
TL;DR: In this paper, a review and classification of existing DER as flexibility providers and a breakdown of trading platforms for DER flexibility in electricity markets is presented, in a situation with smart metering and real-time management of distribution networks, similar arrangements could be enabled for medium and low-voltage levels.
Abstract: In many electric systems worldwide the penetration of Distributed Energy Resources (DER) at the distribution levels is increasing. This penetration brings in different challenges for electricity system management; however if the flexibility of those DER is well managed opportunities arise for coordination. At high voltage levels under responsibility of the system operator, trading mechanisms like contracts for ancillary services and balancing markets provide opportunities for economic efficient supply of system flexibility services. In a situation with smart metering and real-time management of distribution networks, similar arrangements could be enabled for medium- and low-voltage levels. This paper presents a review and classification of existing DER as flexibility providers and a breakdown of trading platforms for DER flexibility in electricity markets.


Journal ArticleDOI
TL;DR: The issue of PMOCs from an environmental perspective is highlighted and the gaps that appear to exist in terms of analysis, monitoring, water treatment and regulation are assessed.
Abstract: The discharge of persistent and mobile organic chemicals (PMOCs) into the aquatic environment is a threat to the quality of our water resources. PMOCs are highly polar (mobile in water) and can pass through wastewater treatment plants, subsurface environments and potentially also drinking water treatment processes. While a few such compounds are known, we infer that their number is actually much larger. This Feature highlights the issue of PMOCs from an environmental perspective and assesses the gaps that appear to exist in terms of analysis, monitoring, water treatment and regulation. On this basis we elaborate strategies on how to narrow these gaps with the intention to better protect our water resources.

Journal ArticleDOI
TL;DR: It is concluded that in this soil system, the increased abundance of fungi in both soils and the altered C cycling patterns in the F:B dominated soils highlight the significant role of fungus in litter decomposition and indicate that F: B ratios are linked to higher C storage potential.
Abstract: Despite several lines of observational evidence, there is a lack of consensus on whether higher fungal:bacterial (F:B) ratios directly cause higher soil carbon (C) storage. We employed RNA sequencing, protein profiling and isotope tracer techniques to evaluate whether differing F:B ratios are associated with differences in C storage. A mesocosm 13C labeled foliar litter decomposition experiment was performed in two soils that were similar in their physico-chemical properties but differed in microbial community structure, specifically their F:B ratio (determined by PLFA analyses, RNA sequencing and protein profiling; all three corroborating each other). Following litter addition, we observed a consistent increase in abundance of fungal phyla; and greater increases in the fungal dominated soil; implicating the role of fungi in litter decomposition. Litter derived 13C in respired CO2 was consistently lower, and residual 13C in bulk SOM was higher in high F:B soil demonstrating greater C storage potential in the fungal:bacterial dominated soil. We conclude that in this soil system, the increased abundance of fungi in both soils and the altered C cycling patterns in the fungal:bacterial dominated soils highlight the significant role of fungi in litter decomposition and indicate that F:B ratios are linked to higher C storage potential.

Journal ArticleDOI
TL;DR: Insightful insights from emerging technologies across a suite of applications are synthesized and future advances are envisioned, enabled by sensors, in the ability to understand, predict, and restore watershed and stream systems.
Abstract: New scientific understanding is catalyzed by novel technologies that enhance measurement precision, resolution or type, and that provide new tools to test and develop theory. Over the last 50 years, technology has transformed the hydrologic sciences by enabling direct measurements of watershed fluxes (evapotranspiration, streamflow) at time scales and spatial extents aligned with variation in physical drivers. High frequency water quality measurements, increasingly obtained by in situ water quality sensors, are extending that transformation. Widely available sensors for some physical (temperature) and chemical (conductivity, dissolved oxygen) attributes have become integral to aquatic science, and emerging sensors for nutrients, dissolved CO2, turbidity, algal pigments, and dissolved organic matter are now enabling observations of watersheds and streams at time scales commensurate with their fundamental hydrological, energetic, elemental, and biological drivers. Here we synthesize insights from emerging technologies across a suite of applications, and envision future advances, enabled by sensors, in our ability to understand, predict, and restore watershed and stream systems.

Journal ArticleDOI
TL;DR: This contribution aims to advance the development of a global biodiversity monitoring strategy by updating the previously published definition of EBV, providing a definition of satellite remote sensing EBVs and introducing a set of principles that are believed to be necessary if ecologists and space agencies are to agree on a list of EBVs that can be routinely monitored from space.
Abstract: Although satellite-based variables have for long been expected to be key components to a unified and global biodiversity monitoring strategy, a definitive and agreed list of these variables still remains elusive. The growth of interest in biodiversity variables observable from space has been partly underpinned by the development of the essential biodiversity variable (EBV) framework by the Group on Earth Observations – Biodiversity Observation Network, which itself was guided by the process of identifying essential climate variables. This contribution aims to advance the development of a global biodiversity monitoring strategy by updating the previously published definition of EBV, providing a definition of satellite remote sensing (SRS) EBVs and introducing a set of principles that are believed to be necessary if ecologists and space agencies are to agree on a list of EBVs that can be routinely monitored from space. Progress toward the identification of SRS-EBVs will require a clear understanding of what makes a biodiversity variable essential, as well as agreement on who the users of the SRS-EBVs are. Technological and algorithmic developments are rapidly expanding the set of opportunities for SRS in monitoring biodiversity, and so the list of SRS-EBVs is likely to evolve over time. This means that a clear and common platform for data providers, ecologists, environmental managers, policy makers and remote sensing experts to interact and share ideas needs to be identified to support long-term coordinated actions.

Journal ArticleDOI
TL;DR: Evidence is provided that the complex litter decay is the result of a dynamic cross‐kingdom functional succession in decomposing leaf litter of temperate beech forest, with a consistent and highly significant correlation between bacterial richness and fungal richness and community structure.
Abstract: Microorganisms play a crucial role in the biological decomposition of plant litter in terrestrial ecosystems. Due to the permanently changing litter quality during decomposition, studies of both fungi and bacteria at a fine taxonomic resolution are required during the whole process. Here we investigated microbial community succession in decomposing leaf litter of temperate beech forest using pyrotag sequencing of the bacterial 16S and the fungal internal transcribed spacer (ITS) rRNA genes. Our results reveal that both communities underwent rapid changes. Proteobacteria, Actinobacteria and Bacteroidetes dominated over the entire study period, but their taxonomic composition and abundances changed markedly among sampling dates. The fungal community also changed dynamically as decomposition progressed, with ascomycete fungi being increasingly replaced by basidiomycetes. We found a consistent and highly significant correlation between bacterial richness and fungal richness (R = 0.76, P < 0.001) and community structure (RM antel = 0.85, P < 0.001), providing evidence of coupled dynamics in the fungal and bacterial communities. A network analysis highlighted nonrandom co-occurrences among bacterial and fungal taxa as well as a shift in the cross-kingdom co-occurrence pattern of their communities from the early to the later stages of decomposition. During this process, macronutrients, micronutrients, C:N ratio and pH were significantly correlated with the fungal and bacterial communities, while bacterial richness positively correlated with three hydrolytic enzymes important for C, N and P acquisition. Overall, we provide evidence that the complex litter decay is the result of a dynamic cross-kingdom functional succession.

Journal ArticleDOI
TL;DR: The data indicate that the microbial community structure and dynamics play an important role in the biochemistry of the fermentation of the beverage and a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations.

Journal ArticleDOI
TL;DR: In this paper, the authors present, first, urban shrinkage as both spatially and temporally uneven, and second, they show that the causes of urban shrinkages are as varied as they are nume...
Abstract: The issue of urban shrinkage has become the new ‘normal’ across Europe: a large number of urban areas find themselves amongst the cities losing population. According to recent studies, almost 42 per cent of all large European cities are currently shrinking. In eastern Europe, shrinking cities have formed the overwhelming majority – here, three out of four cities report a decrease in population. Shrinkage has proved to be a very diverse and complex phenomenon. In our understanding, a considerable and constant loss of population by an urban area classifies it as a shrinking city. So, while the indicator of shrinkage used here is rather simple, the nature of the process and its causes and consequences for the affected urban areas are multifaceted and need to be explained and understood in further detail. Set against this background, the article presents, first, urban shrinkage as both spatially and temporally uneven. Second, this article shows that the causes of urban shrinkage are as varied as they are nume...

Journal ArticleDOI
01 Sep 2016
TL;DR: There is not a single ecological niche for electroactive microorganisms and microbial resource mining based on ecological knowledge bears a great potential for broadening the foundation of microbial electrochemistry as well as for future developments of primary METs.
Abstract: The core of primary microbial electrochemical technologies (METs) is the ability of the electroactive microorganisms to interact with electrodes via extracellular electron transfer (EET), allowing wiring of current flow and microbial metabolism. Geobacter sulfurreducens and Shewanella oneidensis are the model organisms for understanding and engineering EET. Many other microorganisms are reported being electroactive but are often sparsely characterized. Based on a literature survey 94 species are ascribed as electroactive. Their apparent diversity raises questions on the natural importance and distribution of the EET capacity, that is, of the ecological niche of microbial electroactivity. To identify this potential niche the environmental preferences and natural habitat characteristics of all electroactive species were combined with their metabolic, growth and EET characteristics and an extensive meta-analysis performed. The results indicate that there is not a single ecological niche for electroactive microorganisms. Significantly more electroactive species presumably exist in nature as well as already existing strain collections but due to current cultivation techniques their EET potential is not leveraged. Thus, in the light of specific traits required for industrial application, microbial resource mining based on ecological knowledge bears a great potential for broadening the foundation of microbial electrochemistry as well as for future developments of primary METs.

Journal ArticleDOI
TL;DR: In this paper, the authors present a comparative assessment of the way policy-science dialogues have achieved knowledge co-production about strategic urban environmental governance action using the cities of Berlin in Germany and Rotterdam in the Netherlands as case studies.

Journal ArticleDOI
17 Nov 2016-Nature
TL;DR: It is shown that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C4 hydrocarbon butane.
Abstract: The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C1-compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C4 hydrocarbon butane. The archaea, proposed genus 'Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding β-oxidation enzymes, carbon monoxide dehydrogenase and reversible C1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.

Journal ArticleDOI
TL;DR: In this paper, an integrated analysis of changes in human diets, N use efficiency (NUE) of cropping and livestock systems, N pollution and N in traded food and feed products for 12 world regions for the period 1960-2050 is presented.
Abstract: Nitrogen (N) limits crop and grass production, and it is an essential component of dietary proteins. However, N is mobile in the soil-plant system and can be lost to the environment. Estimates of N flows provide a critical tool for understanding and improving the sustainability and equity of the global food system. This letter describes an integrated analysis of changes in N in human diets, N use efficiency (NUE) of cropping and livestock systems, N pollution and N in traded food and feed products for 12 world regions for the period 1960–2050. The largest absolute change in consumption of animal proteins during the period 1960–2009 is seen in China, while the largest share of animal protein per capita is currently observed in North America, Europe and Oceania. Due to the substantial growth of the livestock sector, about three quarters of contemporary global crop production (expressed in protein and including fodder crops and bioenergy byproducts) is allocated to livestock. Trends and levels of NUE and N surpluses in crop production are also diverse, as some regions show soil N depletion (developing regions, e.g. Africa), improving efficiency (industrialized regions, e.g. USA and Europe) and excessive N use (e.g. China, India). Global trade between the 12 regions has increased by a factor of 7.5 for vegetable proteins and by a factor of 10 for animal proteins. The scenarios for 2050 demonstrate that it would be possible to feed the global population in 2050 with moderate animal protein consumption but with much less N pollution, and less international trade than today. In such a scenario, optimal allocation of N inputs among regions to maximize NUE would further decrease pollution, but would require increased levels of N trade comparable to those in a BAU scenario.

Journal ArticleDOI
TL;DR: Early results on the carbon sequestration and pest resistance potential of more diverse plantations are highlighted and suggestions are made for new, innovative experiments in understudied regions to complement the existing network.
Abstract: The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1-15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network.

Journal ArticleDOI
TL;DR: It is argued that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline and suggests research directions at the crossroads between ecology and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes.
Abstract: Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a framework to bridge ecosystem services into policy processes through Multi-Criteria Decision Analysis (MCDA) as decision support tool, which can accommodate conflicting stakeholder perspectives and address trade-offs between ecological, social and economic values.