scispace - formally typeset
Search or ask a question

Showing papers on "Interferon published in 2014"


Journal ArticleDOI
TL;DR: In this paper, the authors summarize the signalling and epigenetic mechanisms that regulate type I IFN-induced STAT activation and ISG transcription and translation and conclude that these regulatory mechanisms determine the biological outcomes of type I ILN responses and whether pathogens are cleared effectively or chronic infection or autoimmune disease ensues.
Abstract: Type I interferons (IFNs) activate intracellular antimicrobial programmes and influence the development of innate and adaptive immune responses. Canonical type I IFN signalling activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, leading to transcription of IFN-stimulated genes (ISGs). Host, pathogen and environmental factors regulate the responses of cells to this signalling pathway and thus calibrate host defences while limiting tissue damage and preventing autoimmunity. Here, we summarize the signalling and epigenetic mechanisms that regulate type I IFN-induced STAT activation and ISG transcription and translation. These regulatory mechanisms determine the biological outcomes of type I IFN responses and whether pathogens are cleared effectively or chronic infection or autoimmune disease ensues.

2,273 citations


Journal ArticleDOI
20 Nov 2014-Immunity
TL;DR: Radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy.

1,357 citations


Journal ArticleDOI
TL;DR: The data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens, and it is surmised that such 'viral mimicry' constitutes a hallmark of successful chemotherapy.
Abstract: Some of the anti-neoplastic effects of anthracyclines in mice originate from the induction of innate and T cell-mediated anticancer immune responses. Here we demonstrate that anthracyclines stimulate the rapid production of type I interferons (IFNs) by malignant cells after activation of the endosomal pattern recognition receptor Toll-like receptor 3 (TLR3). By binding to IFN-α and IFN-β receptors (IFNARs) on neoplastic cells, type I IFNs trigger autocrine and paracrine circuitries that result in the release of chemokine (C-X-C motif) ligand 10 (CXCL10). Tumors lacking Tlr3 or Ifnar failed to respond to chemotherapy unless type I IFN or Cxcl10, respectively, was artificially supplied. Moreover, a type I IFN-related signature predicted clinical responses to anthracycline-based chemotherapy in several independent cohorts of patients with breast carcinoma characterized by poor prognosis. Our data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens. We surmise that such 'viral mimicry' constitutes a hallmark of successful chemotherapy.

785 citations


Journal ArticleDOI
14 Mar 2014-Science
TL;DR: It is described how interferon-α can induce specific degradation of the nuclear viral DNA without hepatotoxicity and proposed lymphotoxin-β receptor activation as a therapeutic alternative and the development of new therapeutics that, in combination with existing antivirals, may cure hepatitis B.
Abstract: Current antiviral agents can control but not eliminate hepatitis B virus (HBV), because HBV establishes a stable nuclear covalently closed circular DNA (cccDNA). Interferon-α treatment can clear HBV but is limited by systemic side effects. We describe how interferon-α can induce specific degradation of the nuclear viral DNA without hepatotoxicity and propose lymphotoxin-β receptor activation as a therapeutic alternative. Interferon-α and lymphotoxin-β receptor activation up-regulated APOBEC3A and APOBEC3B cytidine deaminases, respectively, in HBV-infected cells, primary hepatocytes, and human liver needle biopsies. HBV core protein mediated the interaction with nuclear cccDNA, resulting in cytidine deamination, apurinic/apyrimidinic site formation, and finally cccDNA degradation that prevented HBV reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases—for example, by lymphotoxin-β receptor activation—allows the development of new therapeutics that, in combination with existing antivirals, may cure hepatitis B.

771 citations


Journal ArticleDOI
30 Jan 2014-Nature
TL;DR: Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sensesingle-strander RNA viruses.
Abstract: The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.

765 citations


Journal ArticleDOI
18 Dec 2014-Cell
TL;DR: The apoptotic caspase cascade functions to render mitochondrial apoptosis immunologically silent, and suppresses type I interferon (IFN) production by cells undergoing Bak/Bax-mediated apoptosis.

630 citations


Journal ArticleDOI
TL;DR: In this article, the authors explored the immunotherapeutic potential of oncolytic Newcastle disease virus (NDV) and found that localized intratumoral therapy of B16 melanoma with NDV induces inflammatory responses, leading to lymphocytic infiltrates and antitumor effect in distant (nonvirally injected) tumors without distant virus spread.
Abstract: Preexisting lymphocytic infiltration of tumors is associated with superior prognostic outcomes in a variety of cancers. Recent studies also suggest that lymphocytic responses may identify patients more likely to benefit from therapies targeting immune checkpoints, suggesting that therapeutic efficacy of immune checkpoint blockade can be enhanced through strategies that induce tumor inflammation. To achieve this effect, we explored the immunotherapeutic potential of oncolytic Newcastle disease virus (NDV). We find that localized intratumoral therapy of B16 melanoma with NDV induces inflammatory responses, leading to lymphocytic infiltrates and antitumor effect in distant (nonvirally injected) tumors without distant virus spread. The inflammatory effect coincided with distant tumor infiltration with tumor-specific CD4(+) and CD8(+) T cells, which was dependent on the identity of the virus-injected tumor. Combination therapy with localized NDV and systemic CTLA-4 blockade led to rejection of preestablished distant tumors and protection from tumor rechallenge in poorly immunogenic tumor models, irrespective of tumor cell line sensitivity to NDV-mediated lysis. Therapeutic effect was associated with marked distant tumor infiltration with activated CD8(+) and CD4(+) effector but not regulatory T cells, and was dependent on CD8(+) cells, natural killer cells, and type I interferon. Our findings demonstrate that localized therapy with oncolytic NDV induces inflammatory immune infiltrates in distant tumors, making them susceptible to systemic therapy with immunomodulatory antibodies, which provides a strong rationale for investigation of such combination therapies in the clinic.

620 citations


Journal ArticleDOI
TL;DR: It is demonstrated that aberrant sensing of nucleic acids can cause immune upregulation and heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (also called MDA5) cause a spectrum of neuroimmunological features consistently associated with an enhanced interferon state.
Abstract: The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutieres syndrome and of other undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (also called MDA5) cause a spectrum of neuroimmunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer gain of function such that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation.

470 citations


Journal ArticleDOI
TL;DR: In this article, inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions and restoring the expression of editing-active cytoplasmic ADARs.

467 citations


Journal ArticleDOI
04 Dec 2014-Nature
TL;DR: Murine norovirus infection of germ-free or antibiotic-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease and indicated that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity, similarly to commensal bacteria.
Abstract: Intestinal microbial communities have profound effects on host physiology. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined. Here we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germ-free or antibiotic-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signalling. Consistent with this observation, the IFN-α receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of treatment with antibiotics in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity, similarly to commensal bacteria.

426 citations


Journal ArticleDOI
20 Feb 2014-Immunity
TL;DR: This study defined the phenotypic, functional, and molecular profiles of exhausted CD4(+) T cells and demonstrated unappreciated roles for transcription factors (TFs) including Helios, type I interferon (IFN-I) signaling, and a diverse set of coinhibitory and costimulatory molecules during CD4 (+) T cell exhaustion.

Journal ArticleDOI
TL;DR: The discovery and characterization of the IFITM proteins are reviewed, the spectrum of their antiviral activities are described, and potential mechanisms underlying these effects are discussed.
Abstract: Animal cells use a wide variety of mechanisms to slow or prevent replication of viruses. These mechanisms are usually mediated by antiviral proteins whose expression and activities can be constitutive but are frequently amplified by interferon induction. Among these interferon-stimulated proteins, members of the IFITM (interferon-induced transmembrane) family are unique because they prevent infection before a virus can traverse the lipid bilayer of the cell. At least three human IFITM proteins—IFITM1, IFITM2, and IFITM3—have antiviral activities. These activities limit infection in cultured cells by many viruses, including dengue virus, Ebola virus, influenza A virus, severe acute respiratory syndrome coronavirus, and West Nile virus. Murine Ifitm3 controls influenza A virus infection in vivo, and polymorphisms in human IFITM3 correlate with the severity of both seasonal and highly pathogenic avian influenza virus. Here we review the discovery and characterization of the IFITM proteins, describe the spectrum of their antiviral activities, and discuss potential mechanisms underlying these effects.

Journal ArticleDOI
08 Aug 2014-Science
TL;DR: An oxysterol, 25-HC, is identified as a critical mediator in the negative-feedback pathway of IFN signaling on IL-1 family cytokine production and inflammasome activity and is associated with increased sensitivity to septic shock, exacerbated experimental autoimmune encephalomyelitis, and a stronger ability to repress bacterial growth.
Abstract: Type I interferon (IFN) protects against viruses, yet it also has a poorly understood suppressive influence on inflammation. Here, we report that activated mouse macrophages lacking the IFN-stimulated gene cholesterol 25-hydroxylase ( Ch25h ) and that are unable to produce the oxysterol 25-hydroxycholesterol (25-HC) overproduce inflammatory interleukin-1 (IL-1) family cytokines. 25-HC acts by antagonizing sterol response element–binding protein (SREBP) processing to reduce Il1b transcription and to broadly repress IL-1–activating inflammasomes. In accord with these dual actions of 25-HC, Ch25h-deficient mice exhibit increased sensitivity to septic shock, exacerbated experimental autoimmune encephalomyelitis, and a stronger ability to repress bacterial growth. These findings identify an oxysterol, 25-HC, as a critical mediator in the negative-feedback pathway of IFN signaling on IL-1 family cytokine production and inflammasome activity.

Journal ArticleDOI
16 Oct 2014-Immunity
TL;DR: CD4(+) T cell-dependent signals are important to limit expression of T-bet and allow for the development of CD103(+) CD8(+) Trm cells in the lung airways following respiratory infection.

Journal ArticleDOI
TL;DR: It is revealed that the process of intestinal epithelial cell differentiation upregulates peroxisome biogenesis and promotes robust type III interferon responses in human cells, highlighting the importance of different intracellular organelles in specific innate immune responses.
Abstract: Type I interferon responses are considered the primary means by which viral infections are controlled in mammals. Despite this view, several pathogens activate antiviral responses in the absence of type I interferons. The mechanisms controlling type I interferon-independent responses are undefined. We found that RIG-I like receptors (RLRs) induce type III interferon expression in a variety of human cell types, and identified factors that differentially regulate expression of type I and type III interferons. We identified peroxisomes as a primary site of initiation of type III interferon expression, and revealed that the process of intestinal epithelial cell differentiation upregulates peroxisome biogenesis and promotes robust type III interferon responses in human cells. These findings highlight the importance of different intracellular organelles in specific innate immune responses.

Journal ArticleDOI
TL;DR: It is important to study the therapeutic potential of virus entry inhibitors, especially when combined with strategies to induce immune-mediated killing of infected hepatocytes.

Journal ArticleDOI
TL;DR: E ectopically expressed NRAV in human cells or transgenic mice and found that it significantly promotes influenza A virus replication and virulence and silencing NRAV suppressed IAV replication and virus production, suggesting that reduction of NRAV is part of the host antiviral innate immune response to virus infection.

Journal ArticleDOI
TL;DR: It is shown that RIP1 K45A (kinase dead) knockin mice develop normally into adulthood, indicating that development does not require RIP1 kinase activity, revealing a vital kinase-independent role for RIP1 in preventing pronecrotic as well as proapoptotic signaling events associated with life-threatening innate immune activation at the time of mammalian parturition.
Abstract: The pronecrotic kinase, receptor interacting protein (RIP1, also called RIPK1) mediates programmed necrosis and, together with its partner, RIP3 (RIPK3), drives midgestational death of caspase 8 (Casp8)-deficient embryos. RIP1 controls a second vital step in mammalian development immediately after birth, the mechanism of which remains unresolved. Rip1−/− mice display perinatal lethality, accompanied by gross immune system abnormalities. Here we show that RIP1 K45A (kinase dead) knockin mice develop normally into adulthood, indicating that development does not require RIP1 kinase activity. In the face of complete RIP1 deficiency, cells develop sensitivity to RIP3-mixed lineage kinase domain-like–mediated necroptosis as well as to Casp8-mediated apoptosis activated by diverse innate immune stimuli (e.g., TNF, IFN, double-stranded RNA). When either RIP3 or Casp8 is disrupted in combination with RIP1, the resulting double knockout mice exhibit slightly prolonged survival over RIP1-deficient animals. Surprisingly, triple knockout mice with combined RIP1, RIP3, and Casp8 deficiency develop into viable and fertile adults, with the capacity to produce normal levels of myeloid and lymphoid lineage cells. Despite the combined deficiency, these mice sustain a functional immune system that responds robustly to viral challenge. A single allele of Rip3 is tolerated in Rip1−/−Casp8−/−Rip3+/− mice, contrasting the need to eliminate both alleles of either Rip1 or Rip3 to rescue midgestational death of Casp8-deficient mice. These observations reveal a vital kinase-independent role for RIP1 in preventing pronecrotic as well as proapoptotic signaling events associated with life-threatening innate immune activation at the time of mammalian parturition.

Journal ArticleDOI
01 Jul 2014-Mbio
TL;DR: Compared models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus, and Middle East respiratory syndrome CoV infection, revealing similarities and differences in strategies to control the interferon and innate immune response.
Abstract: The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection. The results illustrated distinct approaches utilized by each virus to antagonize the global ISG response. In addition, the data revealed that highly virulent HPAI virus and MERS-CoV induce repressive histone modifications, which downregulate expression of ISG subsets. Notably, influenza A virus NS1 appears to play a central role in this histone-mediated downregulation in highly pathogenic influenza strains. Together, the work demonstrates the existence of unique and common viral strategies for controlling the global ISG response and provides a novel avenue for viral antagonism via altered histone modifications. IMPORTANCE This work combines systems biology and experimental validation to identify and confirm strategies used by viruses to control the immune response. Using a novel screening approach, specific comparison between highly pathogenic influenza viruses and coronaviruses revealed similarities and differences in strategies to control the interferon and innate immune response. These findings were subsequently confirmed and explored, revealing both a common pathway of antagonism via type I interferon (IFN) delay as well as a novel avenue for control by altered histone modification. Together, the data highlight how comparative systems biology analysis can be combined with experimental validation to derive novel insights into viral pathogenesis.

Journal ArticleDOI
TL;DR: It is proposed that caspase-8 and the RIP kinases are key regulators of macrophage cell death, NF-κB and inflammasome activation, and host resistance after Y. pestis challenge.
Abstract: A number of pathogens cause host cell death upon infection, and Yersinia pestis, infamous for its role in large pandemics such as the “Black Death” in medieval Europe, induces considerable cytotoxicity. The rapid killing of macrophages induced by Y. pestis, dependent upon type III secretion system effector Yersinia outer protein J (YopJ), is minimally affected by the absence of caspase-1, caspase-11, Fas ligand, and TNF. Caspase-8 is known to mediate apoptotic death in response to infection with several viruses and to regulate programmed necrosis (necroptosis), but its role in bacterially induced cell death is poorly understood. Here we provide genetic evidence for a receptor-interacting protein (RIP) kinase–caspase-8-dependent macrophage apoptotic death pathway after infection with Y. pestis, influenced by Toll-like receptor 4-TIR-domain-containing adapter-inducing interferon-β (TLR4-TRIF). Interestingly, macrophages lacking either RIP1, or caspase-8 and RIP3, also had reduced infection-induced production of IL-1β, IL-18, TNF, and IL-6; impaired activation of the transcription factor NF-κB; and greatly compromised caspase-1 processing. Cleavage of the proform of caspase-1 is associated with triggering inflammasome activity, which leads to the maturation of IL-1β and IL-18, cytokines important to host responses against Y. pestis and many other infectious agents. Our results identify a RIP1–caspase-8/RIP3-dependent caspase-1 activation pathway after Y. pestis challenge. Mice defective in caspase-8 and RIP3 were also highly susceptible to infection and displayed reduced proinflammatory cytokines and myeloid cell death. We propose that caspase-8 and the RIP kinases are key regulators of macrophage cell death, NF-κB and inflammasome activation, and host resistance after Y. pestis infection.

Journal ArticleDOI
16 Jan 2014-Immunity
TL;DR: It is suggested that prolonged innate immune activation by HCV impairs the development of successful adaptive immune responses, and comparative immunology provides insights into the maintenance of immune protection.

Journal ArticleDOI
TL;DR: RNA:DNA hybrids are introduced as a novel class of intracellular PAMP molecules and an alternative cGAS ligand next to dsDNA is described next to cGAMP, which initiates a signaling cascade that triggers the induction of an antiviral immune response.
Abstract: Intracellular recognition of non-self and also self-nucleic acids can result in the initiation of potent pro-inflammatory and antiviral cytokine responses. Most recently, cGAS was shown to be critical for the recognition of cytoplasmic dsDNA. Binding of dsDNA to cGAS results in the synthesis of cGAMP(2 0 –5 0 ), which then binds to the endoplasmic reticulum resident protein STING. This initiates a signaling cascade that triggers the induction of an antiviral immune response. While most studies on intracellular nucleic acids have focused on dsRNA or dsDNA, it has remained unexplored whether cytosolic RNA:DNA hybrids are also sensed by the innate immune system. Studying synthetic RNA:DNA hybrids, we indeed observed a strong type I interferon response upon cytosolic delivery of this class of molecule. Studies in THP-1 knockout cells revealed that the recognition of RNA:DNA hybrids is completely attributable to the cGAS–STING pathway. Moreover, in vitro studies showed that recombinant cGAS produced cGAMP upon RNA:DNA hybrid recognition. Altogether, our results introduce RNA:DNA hybrids as a novel class of intracellular PAMP molecules and describe an alternative cGAS ligand next to dsDNA.

01 Aug 2014
TL;DR: The authors found that RIG-I like receptors (RLRs) induce type III interferon expression in a variety of human cell types, and identified factors that differentially regulate expression of type I and type 3 interferons.
Abstract: Type I interferon responses are considered the primary means by which viral infections are controlled in mammals. Despite this view, several pathogens activate antiviral responses in the absence of type I interferons. The mechanisms controlling type I interferon-independent responses are undefined. We found that RIG-I like receptors (RLRs) induce type III interferon expression in a variety of human cell types, and identified factors that differentially regulate expression of type I and type III interferons. We identified peroxisomes as a primary site of initiation of type III interferon expression, and revealed that the process of intestinal epithelial cell differentiation upregulates peroxisome biogenesis and promotes robust type III interferon responses in human cells. These findings highlight the importance of different intracellular organelles in specific innate immune responses.

Journal ArticleDOI
TL;DR: Current knowledge about the role of innate and adaptive immune responses in determining the outcome of HCV infection is summarized.

Journal ArticleDOI
TL;DR: This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells.
Abstract: Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue virus (DENV-2) infection and found them to be novel regulators of the interferon (IFN) response against DENV-2. The three RBPs were required for the accumulation of the protein products of several interferon stimulated genes (ISGs), and for efficient translation of PKR and IFITM2 mRNAs. This identifies G3BP1, G3BP2 and CAPRIN1 as novel regulators of the antiviral state. Their antiviral activity was antagonized by the abundant DENV-2 non-coding subgenomic flaviviral RNA (sfRNA), which bound to G3BP1, G3BP2 and CAPRIN1, inhibited their activity and lead to profound inhibition of ISG mRNA translation. This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells.

Journal ArticleDOI
20 Feb 2014-Immunity
TL;DR: Direct evidence that dysregulation of MDA5 caused autoimmune disorders is provided and insight is provided into the association between disorders of the innate immune system and autoimmunity.

Journal ArticleDOI
20 Mar 2014-Immunity
TL;DR: The nucleotide-binding, leucine-rich-repeat-containing protein, NLRC3, reduced STING-dependent innate immune activation in response to cytosolic DNA, cyclic di-GMP (c-di-G MP), and DNA viruses.

Journal ArticleDOI
19 Jun 2014-Immunity
TL;DR: It is shown that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein has antiviral activity and mediates RIG-I activation by mimicking polyubiquitin.

Journal ArticleDOI
TL;DR: Cyclic GMP-AMP synthase (cGAS) is established as the dominant cytosolic DNA sensor responsible for detection of internalized adenovirus leading to induction of the type I interferon antiviral cascade.
Abstract: Adenovirus (Ad) infection triggers a cell-specific antiviral response following exposure of viral DNA to the intracellular compartment. A variety of DNA sensors (DAI, AIM2, DDx41, RNA polymerase [Pol] III, and IFI16 [p204]) have been identified in recent years; however, the DNA sensor involved in detection of adenovirus has not been established. Cyclic GMP-AMP synthase (cGAS), a DNA sensor that produces a cyclic guanine-adenine dinucleotide (cGAMP) inducer of STING, has been examined to determine its role in generating an antiadenoviral response. Short hairpin RNA (shRNA) lentiviral vectors targeting TBK1, STING, and cGAS were established in murine MS1 endothelial and RAW 264.7 macrophage cell lines. Knockdown of TBK1, STING, and cGAS results in a dramatic reduction in the activation of the primary antiviral response marker phosphorylated interferon (IFN) response factor 3 (IRF3) following exposure to adenovirus. Furthermore, activation of secondary type I IFN signaling targets ((ptyr)STAT1 and (ptyr)STAT2 [(ptyr)STAT1/2]) was also compromised. Consistent with compromised activation of primary and secondary response markers, transcriptional activation of IRF3-responsive genes (beta IFN [IFN-β], ISG15, ISG54) and secondary response transcripts were diminished in cells knocked down in cGAS, STING, or TBK1. These data establish cGAS as the dominant cytosolic DNA sensor responsible for detection of internalized adenovirus leading to induction of the type I interferon antiviral cascade.

Journal ArticleDOI
TL;DR: The results indicate that both MDA5, a recognition molecule, and the IFIT family play an important role in mediating this attenuation with restored virulence observed in their absence and describe novel treatment avenues that exploit this pathway and could potentially be used against a diverse range of viral pathogens that utilize 2′-O-MTase activity to subvert the immune system.
Abstract: The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and, more recently, Middle Eastern respiratory syndrome CoV (MERS-CoV) underscores the importance of understanding critical aspects of CoV infection and pathogenesis. Despite significant insights into CoV cross-species transmission, replication, and virus-host interactions, successful therapeutic options for CoVs do not yet exist. Recent identification of SARS-CoV NSP16 as a viral 2'-O-methyltransferase (2'-O-MTase) led to the possibility of utilizing this pathway to both attenuate SARS-CoV infection and develop novel therapeutic treatment options. Mutations were introduced into SARS-CoV NSP16 within the conserved KDKE motif and effectively attenuated the resulting SARS-CoV mutant viruses both in vitro and in vivo. While viruses lacking 2'-O-MTase activity had enhanced sensitivity to type I interferon (IFN), they were not completely restored in their absence in vivo. However, the absence of either MDA5 or IFIT1, IFN-responsive genes that recognize unmethylated 2'-O RNA, resulted in restored replication and virulence of the dNSP16 mutant virus. Finally, using the mutant as a live-attenuated vaccine showed significant promise for possible therapeutic development against SARS-CoV. Together, the data underscore the necessity of 2'-O-MTase activity for SARS-CoV pathogenesis and identify host immune pathways that mediate this attenuation. In addition, we describe novel treatment avenues that exploit this pathway and could potentially be used against a diverse range of viral pathogens that utilize 2'-O-MTase activity to subvert the immune system. Importance Preventing recognition by the host immune response represents a critical aspect necessary for successful viral infection. Several viruses, including SARS-CoV, utilize virally encoded 2'-O-MTases to camouflage and obscure their viral RNA from host cell sensing machinery, thus preventing recognition and activation of cell intrinsic defense pathways. For SARS-CoV, the absence of this 2'-O-MTase activity results in significant attenuation characterized by decreased viral replication, reduced weight loss, and limited breathing dysfunction in mice. The results indicate that both MDA5, a recognition molecule, and the IFIT family play an important role in mediating this attenuation with restored virulence observed in their absence. Understanding this virus-host interaction provided an opportunity to design a successful live-attenuated vaccine for SARS-CoV and opens avenues for treatment and prevention of emerging CoVs and other RNA virus infections.