scispace - formally typeset
Search or ask a question
Institution

NEC

CompanyTokyo, Japan
About: NEC is a company organization based out in Tokyo, Japan. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 33269 authors who have published 57670 publications receiving 835952 citations. The organization is also known as: NEC Corporation & NEC Electronics Corporation.


Papers
More filters
Journal ArticleDOI
Hiroyuki Yokoyama1
03 Apr 1992-Science
TL;DR: Optical microcavities are resonators that have at least one dimension on the order of a single optical wavelength that hold technological promise for constructing novel kinds of light-emitting devices.
Abstract: Optical microcavities are resonators that have at least one dimension on the order of a single optical wavelength. These structures enable one to control the optical emission properties of materials placed inside them. They can, for example, modify the spatial distribution of radiation power, change the spectral width of the emitted light, and enhance or suppress the spontaneous emission rate. In addition to being attractive for studying the fundamental physics of the interaction between materials and vacuum field fluctuations, optical microcavities hold technological promise for constructing novel kinds of light-emitting devices. One of their most dramatic potential features is thresholdless lasing. In this way and others, controlled spontaneous emission is expected to play a key role in a new generation of optical devices.

384 citations

Posted Content
TL;DR: FixMatch as mentioned in this paper combines consistency regularization and pseudo-labeling to generate pseudo-labels using the model's predictions on weakly-augmented unlabeled images.
Abstract: Semi-supervised learning (SSL) provides an effective means of leveraging unlabeled data to improve a model's performance. In this paper, we demonstrate the power of a simple combination of two common SSL methods: consistency regularization and pseudo-labeling. Our algorithm, FixMatch, first generates pseudo-labels using the model's predictions on weakly-augmented unlabeled images. For a given image, the pseudo-label is only retained if the model produces a high-confidence prediction. The model is then trained to predict the pseudo-label when fed a strongly-augmented version of the same image. Despite its simplicity, we show that FixMatch achieves state-of-the-art performance across a variety of standard semi-supervised learning benchmarks, including 94.93% accuracy on CIFAR-10 with 250 labels and 88.61% accuracy with 40 -- just 4 labels per class. Since FixMatch bears many similarities to existing SSL methods that achieve worse performance, we carry out an extensive ablation study to tease apart the experimental factors that are most important to FixMatch's success. We make our code available at this https URL.

375 citations

Journal ArticleDOI
02 Nov 2000-Nature
TL;DR: The discovery of the smallest possible carbon nanotube, which has a diameter of 4 Å, which is the narrowest attainable that can still remain energetically stable, as predicted by theory.
Abstract: We report here the discovery of the smallest possible carbon nanotube. This has a diameter of 4 A, which is the narrowest attainable that can still remain energetically stable, as predicted by theory. These nanotubes are confined inside multiwalled carbon nanotubes and their diameter corresponds to that of a C20 dodecahedron with a single carbon atom at each of its twenty apices. Unlike larger carbon nanotubes, which, depending on their diameter and helicity, can be either metallic or semiconducting, these smallest nanotubes are always metallic.

372 citations

Journal ArticleDOI
TL;DR: The main challenge of interference management is discussed in detail with its types in femtocells and the solutions proposed over the years to manage interference have been summarised.
Abstract: Increase in system capacity and data rates can be achieved efficiently in a wireless system by getting the transmitter and receiver closer to each other. Femtocells deployed in the macrocell significantly improve the indoor coverage and provide better user experience. The femtocell base station called as Femtocell Access Point (FAP) is fully user deployed and hence reduces the infrastructure, maintenance and operational cost of the operator while at the same time providing good Quality of Service (QoS) to the end user and high network capacity gains. However, the mass deployment of femtocell faces a number of challenges, among which interference management is of much importance, as the fundamental limits of capacity and achievable data rates mainly depends on the interference faced by the femtocell network. To cope with the technical challenges including interference management faced by the femtocells, researchers have suggested a variety of solutions. These solutions vary depending on the physical layer technology and the specific scenarios considered. Furthermore, the cognitive capabilities, as a functionality of femtocell have also been discussed in this survey. This article summarises the main concepts of femtocells that are covered in literature and the major challenges faced in its large scale deployment. The main challenge of interference management is discussed in detail with its types in femtocells and the solutions proposed over the years to manage interference have been summarised. In addition an overview of the current femtocell standardisation and the future research direction of femtocells have also been provided.

365 citations

Journal ArticleDOI
TL;DR: The high efficiency of water-assisted CVD enabled the synthesis of nearly catalyst-free DWNT forests with a carbon purity of 99.95%, which could be templated into organized structures from lithographically patterned catalyst islands.
Abstract: We have succeeded in synthesizing vertically aligned doubled-walled carbon nanotube (DWNT) forests with heights of up to 2.2 mm by water-assisted chemical vapour deposition (CVD). We achieved 85% selectivity of DWNTs through a semi-empirical analysis of the relationships between the tube type and mean diameter and between the mean diameter and the film thickness of sputtered Fe, which was used here as a catalyst. Accordingly, catalysts were engineered for optimum DWNT selectivity by precisely controlling the Fe film thickness. The high efficiency of water-assisted CVD enabled the synthesis of nearly catalyst-free DWNT forests with a carbon purity of 99.95%, which could be templated into organized structures from lithographically patterned catalyst islands.

365 citations


Authors

Showing all 33297 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Xiaodong Wang1351573117552
S. Shankar Sastry12285886155
Sumio Iijima106633101834
Thomas W. Ebbesen9930570789
Kishor S. Trivedi9569836816
Sharad Malik9561537258
Shigeo Ohno9130328104
Adrian Perrig8937453367
Jan M. Rabaey8152536523
C. Lee Giles8053625636
Edward A. Lee7846234620
Otto Zhou7432218968
Katsumi Kaneko7458128619
Guido Groeseneken73107426977
Network Information
Related Institutions (5)
Bell Labs
59.8K papers, 3.1M citations

92% related

Hitachi
101.4K papers, 1.4M citations

92% related

Samsung
163.6K papers, 2M citations

91% related

IBM
253.9K papers, 7.4M citations

91% related

Intel
68.8K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202220
2021234
2020518
2019952
20181,088