scispace - formally typeset
Search or ask a question
Institution

NEC

CompanyTokyo, Japan
About: NEC is a company organization based out in Tokyo, Japan. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 33269 authors who have published 57670 publications receiving 835952 citations. The organization is also known as: NEC Corporation & NEC Electronics Corporation.


Papers
More filters
Proceedings ArticleDOI
02 Dec 1990
TL;DR: In order to achieve fast restoration, a distributed control mechanism that is applicable to both line and path restoration is proposed, and the shared use of spare channels for various failure scenarios, including multiple failure cases, are allowed.
Abstract: With the advent of networking technologies intelligent network elements, such as the digital cross-connect system (DCS), will make it possible to dynamically reconfigure a network for restoration purposes. Both restoration control of DCSs and spare-channel design issues are presented, and how they work together so that a fast and economical SONET self-healing network is obtained. In order to achieve fast restoration, a distributed control mechanism that is applicable to both line and path restoration is proposed. The proposed method allows the shared use of spare channels for various failure scenarios, including multiple failure cases, so that the efficient use of spare channels can be achieved. A linear-programming-based scheme is proposed to obtain spare-channel assignment, where a network-flow technique is used. Through a simulation study, a fast and economical self-healing network is verified. >

193 citations

Journal ArticleDOI
A. Yukawa1
TL;DR: In this article, a novel high-speed low-power CMOS balanced comparator circuit is proposed and implemented in an 8M fully parallel analog-to-digital (A/D) converter IC.
Abstract: A novel high-speed low-power CMOS balanced comparator circuit is proposed and implemented in an 8M fully parallel analog-to-digital (A/D) converter IC. A 20-MHz sampling rate with 350-mW power dissipation from a single 5-V power supply has been realized. Integral linearity of /spl plusmn/ 1/2 LSB to 8-bit conversion has been achieved through intensive transistor dimension optimization applied to the comparator circuit, instead of employing an offset canceling technique.

192 citations

Journal ArticleDOI
Hideto Imai1, Koichi Izumi1, Masashi Matsumoto1, Yoshimi Kubo1, Kazuo Kato1, Yasuhiko Imai1 
TL;DR: XANES analysis indicated that the charge transfer from platinum to the adsorbed oxygen species was almost constant and rather small, that is, about 0.5 electrons per oxygen, up to two monolayers of oxygen, which means that ionic polarization hardly develops at this stage of the surface platinum's "oxide" growth.
Abstract: The electrochemical oxidation behaviors of the surfaces of platinum nanoparticles, one of the key phenomena in fuel cell developments, were investigated in situ and in real time, via time-resolved hard X-ray diffraction and energy dispersive X-ray absorption spectroscopy. Combining two complementary structural analyses, dynamical and inhomogenous structural changes occurring at the surfaces of nanoparticles were monitored on an atomic level with a time resolution of less than 1 s. After oxidation at 1.4 V vs RHE (reversible hydrogen electrode) in a 0.5 M H(2)SO(4) solution, longer Pt-O bonds (2.2-2.3 A that can be assigned to OHH and/or OH species) were first formed on the surface through the partial oxidation of water molecules. Next, these species turned to shorter Pt-O bonds (2.0 A, adsorbed atomic oxygen), and atomic oxygen was incorporated into the inner part of the nanoparticles, forming an initial monolayer oxide that had alpha-PtO(2)-like local structures with expanded Pt-Pt bonds (3.1 A). Finally, quasi-three-dimensional oxides with longer Pt-(O)-Pt bonds (3.5 A, precursor for beta-PtO(2)) grew on the surface, at almost 100 s after oxidation. Despite the very complex oxidation mechanism on the atomic level, XANES analysis indicated that the charge transfer from platinum to the adsorbed oxygen species was almost constant and rather small, that is, about 0.5 electrons per oxygen, up to two monolayers of oxygen. This means that ionic polarization hardly develops at this stage of the surface platinum's "oxide" growth.

192 citations

Posted Content
TL;DR: PGExplainer adopts a deep neural network to parameterize the generation process of explanations, which enables PGExplainer a natural approach to explaining multiple instances collectively, and has better generalization ability and can be utilized in an inductive setting easily.
Abstract: Despite recent progress in Graph Neural Networks (GNNs), explaining predictions made by GNNs remains a challenging open problem. The leading method independently addresses the local explanations (i.e., important subgraph structure and node features) to interpret why a GNN model makes the prediction for a single instance, e.g. a node or a graph. As a result, the explanation generated is painstakingly customized for each instance. The unique explanation interpreting each instance independently is not sufficient to provide a global understanding of the learned GNN model, leading to a lack of generalizability and hindering it from being used in the inductive setting. Besides, as it is designed for explaining a single instance, it is challenging to explain a set of instances naturally (e.g., graphs of a given class). In this study, we address these key challenges and propose PGExplainer, a parameterized explainer for GNNs. PGExplainer adopts a deep neural network to parameterize the generation process of explanations, which enables PGExplainer a natural approach to explaining multiple instances collectively. Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily. Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7\% relative improvement in AUC on explaining graph classification over the leading baseline.

192 citations

Patent
Katsuhisa Yuda1, Manabu Ikemoto1
26 Aug 2003
TL;DR: In this paper, a plasma confining electrode is connected to neutral gas introduction pipes, and a plurality of neutral gas passage holes are provided for each of the lower electrode plate and the gas diffusing plates to supply the neutral gas into the substrate processing region.
Abstract: A plasma CVD apparatus includes first and second electrodes, neutral gas introduction pipes, and a plasma confining electrode interposed between the first and second electrodes to separate a plasma generation region and a substrate processing region. The plasma confining electrode has a hollow structure defined by an upper electrode plate, and a lower electrode plate, and has gas diffusing plates provided in the hollow structure, and has radical passage holes provided to supply radicals from the plasma generation region into the substrate processing region while isolating from a neutral gas. The plasma confining electrode is connected to the neutral gas introduction pipes, and a plurality of neutral gas passage holes are provided for each of the lower electrode plate and the gas diffusing plates to supply the neutral gas into the substrate processing region. A total opening area of the plurality of neutral gas passage holes in the gas diffusing plate on a side of the upper electrode plate is smaller than that of the plurality of neutral gas passage holes in the gas diffusing plate on a side of the lower electrode plate.

192 citations


Authors

Showing all 33297 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Xiaodong Wang1351573117552
S. Shankar Sastry12285886155
Sumio Iijima106633101834
Thomas W. Ebbesen9930570789
Kishor S. Trivedi9569836816
Sharad Malik9561537258
Shigeo Ohno9130328104
Adrian Perrig8937453367
Jan M. Rabaey8152536523
C. Lee Giles8053625636
Edward A. Lee7846234620
Otto Zhou7432218968
Katsumi Kaneko7458128619
Guido Groeseneken73107426977
Network Information
Related Institutions (5)
Bell Labs
59.8K papers, 3.1M citations

92% related

Hitachi
101.4K papers, 1.4M citations

92% related

Samsung
163.6K papers, 2M citations

91% related

IBM
253.9K papers, 7.4M citations

91% related

Intel
68.8K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202220
2021234
2020518
2019952
20181,088