scispace - formally typeset
Journal ArticleDOI: 10.1016/J.PNPBP.2020.110153

Host genetics influences the relationship between the gut microbiome and psychiatric disorders.

02 Mar 2021-Progress in Neuro-psychopharmacology & Biological Psychiatry (Elsevier)-Vol. 106, pp 110153-110153
Abstract: The gut microbiome is associated with psychiatric disorders; however, the molecular mechanisms mediating this association are poorly understood. The ability of host genetics to modulate the gut microbiome may be an important factor in understanding the association. In this study, we aimed to evaluate the role of genetic variants associated with the gut microbiome in the susceptibility of individuals to four psychiatric disorders: schizophrenia (SCZ), attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and major depressive disorder (MDD). A total of 201 host genetic markers associated with microbiome outcomes and reported in available genome-wide association studies (GWAS) were included in the analyses. We searched for these variants in the summary statistics of the largest GWAS on these disorders to date, which were published by the Psychiatric Genomic Consortium, and performed gene-based and gene set association analyses. Two variants were significantly associated with ASD (rs9401458 and rs9401452) and one with MDD (rs75036654). For the gene-based association analysis, eight genes were associated with SCZ (ASIC2, KCND3, ITSN1, SIPA1L3, RBMS3, BANK1, CSMD1, and LHFPL3), one with MDD (ACTL8), two with ADHD (C14orf39 and FBXL17), and one with ASD (PINX). The gene set comprising 83 genes was associated with SCZ (p = 0.047). These findings suggest that genes related to microbiome composition may affect the susceptibility of individuals to psychiatric disorders, mainly schizophrenia. Although less robust, the associations with ASD, ADHD, and MDD cannot be discarded.

... read more

Topics: Microbiome (56%), Genome-wide association study (54%), Autism spectrum disorder (51%) ... read more
Citations
  More

6 results found


Open accessJournal ArticleDOI: 10.1096/FASEBJ.23.1_SUPPLEMENT.LB94
01 Apr 2009-The FASEB Journal
Abstract: Acid-sensing ion channel-1a (ASIC1a) mediates H+-gated current to influence normal brain physiology and impact several models of disease. Although ASIC2 subunits are widely expressed in brain and modulate ASIC1a current, their function remains poorly understood. We identified ASIC2a in dendrites, dendritic spines, and brain synaptosomes. This localization largely relied on ASIC2a binding to PSD-95 and matched that of ASIC1a, which does not coimmunoprecipitate with PSD-95. We found that ASIC2 and ASIC1a associated in brain, and through its interaction with PSD-95, ASIC2 increased ASIC1a localization in dendritic spines. Consistent with earlier work showing that acidic pH elevated spine [Ca2+]i by activating ASIC1a, loss of ASIC2 decreased the percentage of spines responding to acid. Moreover, like a reduction of ASIC1a, the number of spine synapses fell in ASIC2−/− neurons. These results indicate that ASIC2 facilitates ASIC1a localization and function in dendritic spines and suggest that the two subunits work in concert to regulate neuronal function.

... read more

9 Citations


Open accessJournal ArticleDOI: 10.3389/FMICB.2021.700707
Guoling Zhou, Rongrong Yu1, Temoor Ahmed2, Hubiao Jiang2  +5 moreInstitutions (3)
Abstract: Attention-deficit hyperactivity disorder (ADHD) seriously affects children's health, and the gut microbiome has been widely hypothesized to play a role in the regulation of ADHD behavior. The present study aims to the biosynthesize of zinc oxide nanoparticles (ZnONPs) by using Acinetobacter johnsonii strain RTN1, followed by their characterization through state-of-the-art material characterization techniques, viz., UV-vis spectroscopy, Fourier transform infrared spectroscopy, and transmission and scanning electron microscopic analyses with energy dispersive spectrometry. Moreover, we investigated and compared the population composition of gut microbiota and their susceptibility to biogenic ZnONPs between healthy and ADHD children based on the traditional plate method and 16S rRNA amplicon sequence analysis. The antibacterial effect of ZnONPs against gut bacteria was also determined by measurement of live cell number, living/dead bacterial staining test, and flow cytometry observation. The present study revealed that the number of live gut bacteria in healthy children was more than 10-fold higher than that in ADHD children; however, the community structure of gut bacteria has changed, while greater diversity was found in gut bacteria from ADHD children. In addition, we found that the number of live gut bacteria in healthy and ADHD children was reduced by ZnONPs, which shows an increased and reduced effect in composition of gut bacteria from healthy and ADHD children, respectively. It was also noted that the main mechanism of ZnONPs may be to inhibit the growth of gut bacteria rather than to kill them, while the nanoparticle-resistant strains in healthy children is also different from that in ADHD children. Some representative bacteria, in particular nanoparticle-resistant bacteria, were successfully isolated and identified. Overall, this study revealed the potential correlation of ADHD with gut bacteria and provided a new possibility to prevent ADHD by the combination of nanoparticle and its resistant bacteria.

... read more

Topics: Gut flora (54%), Population (51%)

1 Citations


Open accessJournal ArticleDOI: 10.3390/GENES12111660
21 Oct 2021-Genes
Abstract: Syndromic neurodevelopmental disorders are usually investigated through genetics technologies, within which array comparative genomic hybridization (Array-CGH) is still considered the first-tier clinical diagnostic test. Among recurrent syndromic imbalances, 17q12 deletions and duplications are characterized by neurodevelopmental disorders associated with visceral developmental disorders, although expressive variability is common. Here we describe a case series of 12 patients with 17q12 chromosomal imbalances, in order to expand the phenotypic characterization of these recurrent syndromes whose diagnosis is often underestimated, especially if only mild traits are present. Gene content and genotype-phenotype correlations have been discussed, with special regard to neuropsychiatric features, whose impact often requires etiologic analysis.

... read more


Open accessJournal ArticleDOI: 10.3390/GENES12091407
13 Sep 2021-Genes
Abstract: Comorbidity studies show that children with ADHD have a higher risk of being overweight and obese than healthy children. This study aimed to assess the genetic alternations that differ between and are shared by ADHD and excessive body weight (EBW). The sample consisted of 743 Polish children aged between 6 and 17 years. We analyzed a unique set of genes and polymorphisms selected for ADHD and/or obesity based on gene prioritization tools. Polymorphisms in the KCNIP1, SLC1A3, MTHFR, ADRA2A, and SLC6A2 genes proved to be associated with the risk of ADHD in the studied population. The COMT gene polymorphism was one that specifically increased the risk of EBW in the ADHD group. Using the whole-exome sequencing technique, we have shown that the ADHD group contains rare and protein-truncating variants in the FBXL17, DBH, MTHFR, PCDH7, RSPH3, SPTBN1, and TNRC6C genes. In turn, variants in the ADRA2A, DYNC1H1, MAP1A, SEMA6D, and ZNF536 genes were specific for ADHD with EBW. In this way, we confirmed, at the molecular level, the existence of genes specifically predisposing to EBW in ADHD patients, which are associated with the biological pathways involved in the regulation of the reward system, intestinal microbiome, and muscle metabolism.

... read more


Journal ArticleDOI: 10.1097/YCO.0000000000000733
Jerzy Samochowiec1, Błażej Misiak2Institutions (2)
Abstract: Purpose of review Accumulating evidence indicates that there are bidirectional interactions between the gut microbiota and functioning of the central nervous system. Consequently, it has been proposed that gut microbiota alterations might play an important role in the pathophysiology of schizophrenia. Therefore, in this article, we aimed to perform a narrative review of studies addressing gut microbiota alterations in patients with schizophrenia that were published in the years 2019-2020. Recent findings Several studies have shown a number of gut microbiota alterations at various stages of schizophrenia. Some of them can be associated with neurostructural abnormalities, psychopathological symptoms, subclinical inflammation and cardiovascular risk. Experimental studies clearly show that transplantation of gut microbiota from unmedicated patients with schizophrenia to germ-free mice results in a number of behavioural impairments accompanied by altered neurotransmission. However, findings from clinical trials do not support the use of probiotics as add-on treatments in schizophrenia. Summary Gut microbiota alterations are widely observed in patients with schizophrenia and might account for various biological alterations involved in the cause of psychosis. However, longitudinal studies are still needed to conclude regarding causal associations. Well designed clinical trials are needed to investigate safety and efficacy of probiotics and prebiotics in schizophrenia.

... read more

Topics: Gut flora (56%), Microbiome (51%), Transplantation (51%)

References
  More

83 results found


Open accessJournal ArticleDOI: 10.1038/NATURE13595
Stephan Ripke1, Stephan Ripke2, Benjamin M. Neale2, Benjamin M. Neale1  +351 moreInstitutions (102)
24 Jul 2014-Nature
Abstract: Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

... read more

Topics: Psychiatric genetics (55%), Genome-wide association study (54%), Complement component 4 (53%) ... read more

5,812 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2012.01.035
16 Mar 2012-Cell
Abstract: The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. The constituents of the microbiota—bacteria, viruses, and eukaryotes—have been shown to interact with one another and with the host immune system in ways that influence the development of disease. We review these interactions and suggest that a holistic approach to studying the microbiota that goes beyond characterization of community composition and encompasses dynamic interactions between all components of the microbiota and host tissue over time will be crucial for building predictive models for diagnosis and treatment of diseases linked to imbalances in our microbiota.

... read more

Topics: Gut flora (51%)

2,315 Citations


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTQ419
Randall Pruim1, Ryan P. Welch2, Serena Sanna2, Tanya M. Teslovich2  +5 moreInstitutions (2)
15 Sep 2010-Bioinformatics
Abstract: Summary: Genome-wide association studies (GWAS) have revealed hundreds of loci associated with common human genetic diseases and traits. We have developed a web-based plotting tool that provides fast visual display of GWAS results in a publication-ready format. LocusZoom visually displays regional information such as the strength and extent of the association signal relative to genomic position, local linkage disequilibrium (LD) and recombination patterns

... read more

2,074 Citations


Open accessJournal ArticleDOI: 10.1371/JOURNAL.PCBI.1004219
Abstract: By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn’s Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn’s Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn’s Disease data was found to be considerably faster as well.

... read more

1,402 Citations