scispace - formally typeset
Search or ask a question
Institution

Toyota

CompanySafenwil, Switzerland
About: Toyota is a company organization based out in Safenwil, Switzerland. It is known for research contribution in the topics: Internal combustion engine & Battery (electricity). The organization has 40032 authors who have published 55003 publications receiving 735317 citations. The organization is also known as: Toyota Motor Corporation & Toyota Jidosha KK.


Papers
More filters
Ercan M. Dede1
01 Jan 2009
TL;DR: ComSOL Multiphysics software is coupled with a method of moving asymptotes optimizer in a custom COMSOL / MATLAB script for topology optimization of heat transfer and fluid flow systems for multiphysics objectives.
Abstract: This paper is focused on topology optimization of heat transfer and fluid flow systems for multiphysics objectives. Specifically, COMSOL Multiphysics software is coupled with a method of moving asymptotes optimizer in a custom COMSOL / MATLAB script. Various physical process including conduction, convectiondiffusion, and Navier-Stokes flow are considered. To illustrate the method, a standard pure heat conduction problem is first presented in two dimensions followed by an extension of the problem to three dimensions. More complex physics are then examined in the optimization process for a three-terminal heat transfer and fluid flow device. General applications and limitations of the methodology are discussed.

119 citations

Journal ArticleDOI
TL;DR: In this paper, an open atmosphere type chemical vapor deposition (OA-CVD) method is used to produce functional thin films for thin-film solar cells, which is a unique technique which is able to deposit metal oxide thin films by decomposition of vaporized raw materials released through a nozzle onto substrates in the air.
Abstract: An open atmosphere type chemical vapor deposition (OA-CVD) method is one of the most effective methods for producing functional thin films. Especially, the OA-CVD method is a unique technique which is able to deposit metal oxide thin films by decomposition of vaporized raw materials released through a nozzle onto substrates in the air. Cu2ZnSnS4 (CZTS)-based thin films as absorber layers of thin film solar cells were fabricated by sulfurizing oxide precursor thin films synthesized by the OA-CVD method. Cu(C5H7O2)2, Zn(C5H7O2)2 and Sn(C5H7O2)2 were used as raw materials. The oxide precursor thin films were sulfurized at 520–560 °C in 5 vol% H2S balanced with N2. The formed CZTS-based thin films included oxygen with the composition ratio of O/(S + O) = 0.17–0.27 according to energy dispersive X-ray spectroscopy. The thin film solar cells using the CZTS-based thin films including oxygen [CZT(S,O) films] as the absorber layers were fabricated. The CZT(S,O) thin film solar cell had a stack structure of Al/Al-doped-ZnO/CdS/CZT(S,O)/Mo/soda-lime glass substrate. The efficiency of the CZT(S,O) thin film solar cells was 6.03%, which was the high efficiency in the reported value for CZTS-based thin film solar cells using oxide thin film precursors. It was found that the OA-CVD method is suited to fabricate the absorber layers of thin film solar cells.

119 citations

Patent
27 Mar 1996
TL;DR: In this paper, an O2 sensor generating a current proportional to the air-fuel ratio is arranged in the exhaust passage downstream of the NOx absorbent, and the amount of oxygen stored in the absorbent is detected from the output signal of the sensor at this time.
Abstract: A device for detecting deterioration of a NOx absorbent arranged in the exhaust passage of an engine. An O2 sensor generating a current proportional to the air-fuel ratio is arranged in the exhaust passage downstream of the NOx absorbent. When the amount of NOx absorbed in the NOx absorbent is almost zero or after the amount of NOx absorbed in the NOx absorbent is made almost zero, the air-fuel ratio of the air-fuel mixture is changed from lean to rich, and the amount of oxygen stored in the NOx absorbent is detected from the output signal of the O2 sensor at this time. Further, the NOx absorbing capability is found by using this detected oxygen amount.

119 citations

Journal ArticleDOI
TL;DR: In this article, a solid solution of the lithium superionic conductor Li10+δGe1+ δP2−δS12 (0 ≤ δ ≤ 0.35) was synthesized and its structure and ionic conductivity were examined.
Abstract: A solid solution of the lithium superionic conductor Li10+δGe1+δP2−δS12 (0 ≤ δ ≤ 0.35) was synthesized and its structure and ionic conductivity were examined. The highest ionic conductivity value of 1.42 × 10−2 S cm−1 was obtained at 300 K with a sintered pellet of the sample having the highest solid solution lithium content of δ = 0.35. The Arrhenius conductivity curves obtained for this material exhibited a gradual change in slope over the temperature range of 193–373 K and the activation energy for ionic conduction decreased from 26 kJ mol−1 below 373 K to 7 kJ mol−1 above 573 K, which is typical of highly ionic conducting solids. The crystal structures of the solid solutions were determined using neutron diffraction, and conduction pathways were visualized through analysis by applying the maximum entropy method. The lithium distribution was found to disperse significantly throughout a one-dimensional conduction pathway as the temperature was increased from 4.8 K to 750 K. In addition, two-dimensional distribution of lithium along the ab plane became apparent at high temperatures, suggesting that the conduction mechanism changes from one-dimensional to three-dimensional with increasing temperature.

119 citations

Patent
Yutaka Taga1, Ryuji Ibaraki1
11 Jun 1996
TL;DR: In this article, a regenerative brake controller for controlling a value of regenerative braking torque to simulate engine braking torque is presented, where the shift lever is in the D range, from a first control map which correlates the vehicle speed and the like with target braking torque or target deceleration.
Abstract: A regenerative brake controller for controlling a value of regenerative braking torque to simulate engine braking torque. When the shift lever is in the D range, from a first control map which correlates the vehicle speed and the like with target braking torque or target deceleration, the controller reads the target braking torque or target deceleration corresponding to the vehicle speed immediately before the release of the accelerator pedal, and controls the vehicle components on the basis of the read target braking torque or target deceleration such that the regenerative braking torque corresponding to the engine braking torque is produced. When the shift lever is in the engine braking range, the controller detects the shift lever position in this range, determines the target braking torque or target deceleration by referring to the map, and on the basis of the vehicle speed and the like immediately before the release of the accelerator pedal and the shift lever position in the engine braking range, and controls the vehicle components according to the determined target braking torque or target deceleration such that the regenerative braking torque corresponding to the engine braking torque is produced. In connection with the regenerative braking torque corresponding to the engine braking torque, the vehicle drivability can be improved.

119 citations


Authors

Showing all 40045 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Edward H. Sargent14084480586
Shanhui Fan139129282487
Susumu Kitagawa12580969594
John B. Buse117521101807
Meilin Liu11782752603
Zhongfan Liu11574349364
Wolfram Burgard11172864856
Douglas R. MacFarlane11086454236
John J. Leonard10967646651
Ryoji Noyori10562747578
Stephen J. Pearton104191358669
Lajos Hanzo101204054380
Masashi Kawasaki9885647863
Andrzej Cichocki9795241471
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

87% related

Osaka University
185.6K papers, 5.1M citations

86% related

KAIST
77.6K papers, 1.8M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202232
2021942
20201,846
20192,981
20182,541