scispace - formally typeset
Search or ask a question
Institution

Toyota

CompanySafenwil, Switzerland
About: Toyota is a company organization based out in Safenwil, Switzerland. It is known for research contribution in the topics: Internal combustion engine & Battery (electricity). The organization has 40032 authors who have published 55003 publications receiving 735317 citations. The organization is also known as: Toyota Motor Corporation & Toyota Jidosha KK.


Papers
More filters
Journal ArticleDOI
Yuichi Itou1, Yoshio Ukyo1
TL;DR: In this paper, the mechanism of the increasing of resistance of lithium-ion batteries using Li(Ni,Co)O2 based material as positive electrode materials was investigated, and the increase in resistance was mainly attributed to that at positive electrode by'reconstructed method'.

195 citations

Proceedings ArticleDOI
Jun Harada1, Tsutomu Tomita1, Hiroyuki Mizuno1, Zenichiro Mashiki1, Yasushi Ito1 

195 citations

Journal ArticleDOI
TL;DR: High soluble, noncovalently functionalized boron nitride nanosheets (NF-BNNSs) with chlorosulfonic acid (CSA) were prepared by extremely facile and low-cost direct exfoliation of hexagonal borOn nitrides (h-BNs), and acted as excellent nanofillers for dramatically improving both in- and through-plane thermal conductivities of insulating polymers.
Abstract: There is an increasing demand for highly thermally conductive and electrically insulating polymer materials for next-generation electronic devices, power systems, and communication equipment. Boron nitride nanosheets (BNNSs) are insulating materials with extremely high thermal conductivity. However, BNNSs suffer from the lack of facile and low-cost methods for producing large volumes of BNNSs, and extremely low through-plane thermal conductivities of BNNS/polymer composites as compared to the in-plane thermal conductivities. Herein, highly soluble, noncovalently functionalized boron nitride nanosheets (NF-BNNSs) with chlorosulfonic acid (CSA) were prepared by extremely facile and low-cost direct exfoliation of hexagonal boron nitrides (h-BNs), and acted as excellent nanofillers for dramatically improving both in- and through-plane thermal conductivities of insulating polymers. CSA is a cheap and versatile superacid with a large production volume. CSA showed strong physical adsorption on h-BN surfaces, giv...

195 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: Gaze360 as discussed by the authors is a large-scale remote gaze tracking dataset and method for robust 3D gaze estimation in unconstrained images, which consists of 238 subjects in indoor and outdoor environments with labelled three-dimensional (3D) gaze across a wide range of head poses and distances.
Abstract: Understanding where people are looking is an informative social cue. In this work, we present Gaze360, a large-scale remote gaze-tracking dataset and method for robust 3D gaze estimation in unconstrained images. Our dataset consists of 238 subjects in indoor and outdoor environments with labelled 3D gaze across a wide range of head poses and distances. It is the largest publicly available dataset of its kind by both subject and variety, made possible by a simple and efficient collection method. Our proposed 3D gaze model extends existing models to include temporal information and to directly output an estimate of gaze uncertainty. We demonstrate the benefits of our model via an ablation study, and show its generalization performance via a cross-dataset evaluation against other recent gaze benchmark datasets. We furthermore propose a simple self-supervised approach to improve cross-dataset domain adaptation. Finally, we demonstrate an application of our model for estimating customer attention in a supermarket setting. Our dataset and models will be made available at http://gaze360.csail.mit.edu.

194 citations

Journal ArticleDOI
TL;DR: In this Review, the foremost research in the development of electrolytes and cathodes is highlighted and some of the significant challenges which must be overcome in realizing a practical magnesium battery are discussed.
Abstract: Magnesium metal is a superior anode which has double the volumetric capacity of lithium metal and has a negative reduction potential of −2.37 V vs. the standard hydrogen electrode. A major benefit of magnesium is the apparent lack of dendrite formation during charging which is one of the crucial concerns of using a lithium metal anode. In this Review, we highlight the foremost research in the development of electrolytes and cathodes and discuss some of the significant challenges which must be overcome in realizing a practical magnesium battery.

194 citations


Authors

Showing all 40045 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Edward H. Sargent14084480586
Shanhui Fan139129282487
Susumu Kitagawa12580969594
John B. Buse117521101807
Meilin Liu11782752603
Zhongfan Liu11574349364
Wolfram Burgard11172864856
Douglas R. MacFarlane11086454236
John J. Leonard10967646651
Ryoji Noyori10562747578
Stephen J. Pearton104191358669
Lajos Hanzo101204054380
Masashi Kawasaki9885647863
Andrzej Cichocki9795241471
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

87% related

Osaka University
185.6K papers, 5.1M citations

86% related

KAIST
77.6K papers, 1.8M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202232
2021942
20201,846
20192,981
20182,541