scispace - formally typeset
Search or ask a question

Showing papers by "Novartis published in 2011"


Journal ArticleDOI
TL;DR: Sarcopenia should be considered in all older patients who present with observed declines in physical function, strength, or overall health, and patients who meet these criteria should further undergo body composition assessment using dual energy x-ray absorptiometry with sarcopenia being defined using currently validated definitions.

2,378 citations


Journal ArticleDOI
TL;DR: Everolimus, as compared with placebo, significantly prolonged progression-free survival among patients with progressive advanced pancreatic neuroendocrine tumors and was associated with a low rate of severe adverse events.
Abstract: A B S T R AC T BACKGROUND Everolimus, an oral inhibitor of mammalian target of rapamycin (mTOR), has shown antitumor activity in patients with advanced pancreatic neuroendocrine tumors, in two phase 2 studies. We evaluated the agent in a prospective, randomized, phase 3 study. METHODS We randomly assigned 410 patients who had advanced, low-grade or intermediategrade pancreatic neuroendocrine tumors with radiologic progression within the previous 12 months to receive everolimus, at a dose of 10 mg once daily (207 patients), or placebo (203 patients), both in conjunction with best supportive care. The primary end point was progression-free survival in an intention-to-treat analysis. In the case of patients in whom radiologic progression occurred during the study, the treatment assignments could be revealed, and patients who had been randomly assigned to placebo were offered open-label everolimus. Results The median progression-free survival was 11.0 months with everolimus as compared with 4.6 months with placebo (hazard ratio for disease progression or death from any cause with everolimus, 0.35; 95% confidence interval [CI], 0.27 to 0.45; P<0.001), representing a 65% reduction in the estimated risk of progression or death. Estimates of the proportion of patients who were alive and progression-free at 18 months were 34% (95% CI, 26 to 43) with everolimus as compared with 9% (95% CI, 4 to 16) with placebo. Drug-related adverse events were mostly grade 1 or 2 and included stomatitis (in 64% of patients in the everolimus group vs. 17% in the placebo group), rash (49% vs. 10%), diarrhea (34% vs. 10%), fatigue (31% vs. 14%), and infections (23% vs. 6%), which were primarily upper respiratory. Grade 3 or 4 events that were more frequent with everolimus than with placebo included anemia (6% vs. 0%) and hyperglycemia (5% vs. 2%). The median exposure to everolimus was longer than exposure to placebo by a factor of 2.3 (38 weeks vs. 16 weeks). Conclusions Everolimus, as compared with placebo, significantly prolonged progression-free survival among patients with progressive advanced pancreatic neuroendocrine tumors and was associated with a low rate of severe adverse events. (Funded by Novartis Oncology; RADIANT-3 ClinicalTrials.gov number, NCT00510068.)

2,357 citations


Journal ArticleDOI
14 Dec 2011-Nature
TL;DR: It is shown that DNA-binding factors locally influence DNA methylation, enabling the identification of active regulatory regions and shows that neuronal and stem-cell methylomes are dependent on each other, as cell-type-specific LMRs are occupied by cell- type-specific transcription factors.
Abstract: Methylation of cytosines is an essential epigenetic modification in mammalian genomes, yet the rules that govern methylation patterns remain largely elusive To gain insights into this process, we generated base-pair-resolution mouse methylomes in stem cells and neuronal progenitors Advanced quantitative analysis identified low-methylated regions (LMRs) with an average methylation of 30% These represent CpG-poor distal regulatory regions as evidenced by location, DNase I hypersensitivity, presence of enhancer chromatin marks and enhancer activity in reporter assays LMRs are occupied by DNA-binding factors and their binding is necessary and sufficient to create LMRs A comparison of neuronal and stem-cell methylomes confirms this dependency, as cell-type-specific LMRs are occupied by cell-type-specific transcription factors This study provides methylome references for the mouse and shows that DNA-binding factors locally influence DNA methylation, enabling the identification of active regulatory regions

1,253 citations


Journal ArticleDOI
TL;DR: Ranibizumab monotherapy and combined with laser provided superior visual acuity gain over standard laser in patients with visual impairment due to DME and had a safety profile in DME similar to that in age-related macular degeneration.

1,187 citations


Journal ArticleDOI
29 Sep 2011-Nature
TL;DR: Tet3-mediated DNA hydroxylation is involved in epigenetic reprogramming of the zygotic paternal DNA following natural fertilization and may also contribute to somatic cell nuclear reprograming during animal cloning.
Abstract: Sperm and eggs carry distinctive epigenetic modifications that are adjusted by reprogramming after fertilization. The paternal genome in a zygote undergoes active DNA demethylation before the first mitosis. The biological significance and mechanisms of this paternal epigenome remodelling have remained unclear. Here we report that, within mouse zygotes, oxidation of 5-methylcytosine (5mC) occurs on the paternal genome, changing 5mC into 5-hydroxymethylcytosine (5hmC). Furthermore, we demonstrate that the dioxygenase Tet3 (ref. 5) is enriched specifically in the male pronucleus. In Tet3-deficient zygotes from conditional knockout mice, paternal-genome conversion of 5mC into 5hmC fails to occur and the level of 5mC remains constant. Deficiency of Tet3 also impedes the demethylation process of the paternal Oct4 and Nanog genes and delays the subsequent activation of a paternally derived Oct4 transgene in early embryos. Female mice depleted of Tet3 in the germ line show severely reduced fecundity and their heterozygous mutant offspring lacking maternal Tet3 suffer an increased incidence of developmental failure. Oocytes lacking Tet3 also seem to have a reduced ability to reprogram the injected nuclei from somatic cells. Therefore, Tet3-mediated DNA hydroxylation is involved in epigenetic reprogramming of the zygotic paternal DNA following natural fertilization and may also contribute to somatic cell nuclear reprogramming during animal cloning.

1,028 citations


Journal ArticleDOI
TL;DR: The case for the use of HTS as part of a proven scientific tool kit, the wider use of which is essential for the discovery of new chemotypes is presented.
Abstract: High-throughput screening (HTS) has been postulated in several quarters to be a contributory factor to the decline in productivity in the pharmaceutical industry. Moreover, it has been blamed for stifling the creativity that drug discovery demands. In this article, we aim to dispel these myths and present the case for the use of HTS as part of a proven scientific tool kit, the wider use of which is essential for the discovery of new chemotypes.

1,023 citations


Journal ArticleDOI
07 Apr 2011-Blood
TL;DR: It is shown for the first time in humans that adoptive transfer of Tregs prevented GVHD in the absence of any posttransplantation immunosuppression, promoted lymphoid reconstitution, improved immunity to opportunistic pathogens, and did not weaken the graft-versus-leukemia effect.

982 citations



Journal ArticleDOI
TL;DR: With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification /G- and P-type.
Abstract: In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.

836 citations


Journal ArticleDOI
TL;DR: Interleukin-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand and suggests that drugs modulating this loop may be useful in type 2 diabetes.
Abstract: Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes.

731 citations


Journal ArticleDOI
TL;DR: If positive, CANTOS would confirm the inflammatory hypothesis of atherothrombosis and provide a novel cytokine-based therapy for the secondary prevention of cardiovascular disease and new-onset diabetes.

Journal ArticleDOI
TL;DR: The estimate of the global incidence of JE remains substantial despite improvements in vaccination coverage, and more and better incidence studies in selected countries, particularly China and India, are needed to further refine these estimates.
Abstract: OBJECTIVE: To update the estimated global incidence of Japanese encephalitis (JE) using recent data for the purpose of guiding prevention and control efforts. METHODS: Thirty-two areas endemic for JE in 24 Asian and Western Pacific countries were sorted into 10 incidence groups on the basis of published data and expert opinion. Population-based surveillance studies using laboratory-confirmed cases were sought for each incidence group by a computerized search of the scientific literature. When no eligible studies existed for a particular incidence group, incidence data were extrapolated from related groups. FINDINGS: A total of 12 eligible studies representing 7 of 10 incidence groups in 24 JE-endemic countries were identified.Approximately 67 900 JE cases typically occur annually (overall incidence: 1.8 per 100 000), of which only about 10% are reported to the World Health Organization. Approximately 33 900 (50%) of these cases occur in China (excluding Taiwan) and approximately 51 000 (75%) occur in children aged 0-14 years (incidence: 5.4 per 100 000). Approximately 55 000 (81%) cases occur in areas with well established or developing JE vaccination programmes, while approximately 12 900 (19%) occur in areas with minimal or no JE vaccination programmes. CONCLUSION: Recent data allowed us to refine the estimate of the global incidence of JE, which remains substantial despite improvements in vaccination coverage. More and better incidence studies in selected countries, particularly China and India, are needed to further refine these estimates.

Journal ArticleDOI
TL;DR: It is found that H3K4me3 inhibits PRC2 activity in an allosteric fashion assisted by the Su(z)12 C terminus, which provides the molecular basis of histone H3 N terminus recognition by thePRC2 Nurf55-Su( z)12 submodule.

Journal ArticleDOI
TL;DR: The data suggest that Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting 5mC to 5hmC through hydroxylase activity.

Journal ArticleDOI
TL;DR: An antagonist for the metabotropic glutamate receptor may improve symptoms in patients with fragile X syndrome whose FMR1 promoters are fully methylated, a sign that gene expression is completely silenced, and provides the basis for a larger study to test whether methylation can serve as a predictor of a positive antagonist response in a population of patients with Fragile X syndrome.
Abstract: Fragile X syndrome (FXS) is an X-linked condition associated with intellectual disability and behavioral problems. It is caused by expansion of a CGG repeat in the 5′ untranslated region of the fragile X mental retardation 1 (FMR1) gene. ThismutationisassociatedwithhypermethylationattheFMR1promoterandresultanttranscriptionalsilencing.FMR1 silencinghasmanyconsequences,includingup-regulationofmetabotropicglutamatereceptor5(mGluR5)–mediated signaling. mGluR5 receptor antagonists have shown promise in preclinical FXS models and in one small open-label study of FXS. We examined whether a receptor subtype–selective inhibitor of mGluR5, AFQ056, improves the behavioral symptoms of FXS in a randomized, double-blind, two-treatment, two-period, crossover study of 30 male FXS patients aged 18 to 35 years. We detected no significant effects of treatment on the primary outcome measure, the Aberrant Behavior Checklist–Community Edition (ABC-C) score, at day 19 or 20 of treatment. In an exploratory analysis, however, seven patients with full FMR1 promoter methylation and no detectable FMR1 messenger RNA improved, as measured with the ABC-C, significantly more after AFQ056 treatment than with placebo (P <0 .001). We detected no response in 18 patients with partial promoter methylation. Twenty-four patients experienced an adverse event, which was mostly mild to moderately severe fatigue or headache. If confirmed in larger and longer-term studies, these results suggest that blockade of the mGluR5 receptor in patients with full methylation at the FMR1 promoter may show improvement in the behavioral attributes of FXS.

Journal ArticleDOI
Smita Saxena1, Pico Caroni1
14 Jul 2011-Neuron
TL;DR: How a stressor-threshold model of how particular neurons and circuits are selectively vulnerable to disease may underly the etiology of familial and sporadic forms of diseases such as Alzheimer's, Parkinson's, Huntington's, and ALS is discussed.

Journal ArticleDOI
TL;DR: It is shown that complement, specifically, the membrane attack complex (MAC)-mediated arm of complement, is crucial to the development of arthritis in three different mouse models of osteoarthritis, and dysregulation of complement in synovial joints has a key role in the pathogenesis of arthritis.
Abstract: Osteoarthritis, characterized by the breakdown of articular cartilage in synovial joints, has long been viewed as the result of 'wear and tear'. Although low-grade inflammation is detected in osteoarthritis, its role is unclear. Here we identify a central role for the inflammatory complement system in the pathogenesis of osteoarthritis. Through proteomic and transcriptomic analyses of synovial fluids and membranes from individuals with osteoarthritis, we find that expression and activation of complement is abnormally high in human osteoarthritic joints. Using mice genetically deficient in complement component 5 (C5), C6 or the complement regulatory protein CD59a, we show that complement, specifically, the membrane attack complex (MAC)-mediated arm of complement, is crucial to the development of arthritis in three different mouse models of osteoarthritis. Pharmacological modulation of complement in wild-type mice confirmed the results obtained with genetically deficient mice. Expression of inflammatory and degradative molecules was lower in chondrocytes from destabilized joints from C5-deficient mice than C5-sufficient mice, and MAC induced production of these molecules in cultured chondrocytes. Further, MAC colocalized with matrix metalloprotease 13 (MMP13) and with activated extracellular signal-regulated kinase (ERK) around chondrocytes in human osteoarthritic cartilage. Our findings indicate that dysregulation of complement in synovial joints has a key role in the pathogenesis of osteoarthritis.

Journal ArticleDOI
TL;DR: This work provides the first evidence for the potential use of miRNAs as biomarkers of human drug‐induced liver injury by examining these molecules, for the first time, in humans with APAP poisoning.

Journal ArticleDOI
TL;DR: The results reveal a new post‐translational regulation of SOD2 by means of acetylation and SIRT3‐dependent deacetylation in response to oxidative stress.
Abstract: Mitochondria manganese superoxide dismutase (SOD2) is an important antioxidant enzyme, deficiency of which is associated with various human diseases. The known primary regulation of SOD2 is through transcriptional activation. Here, we report that SOD2 is acetylated at Lys 68 and that this acetylation decreases SOD2 activity. Mitochondrial deacetylase SIRT3 binds to, deacetylates and activates SOD2. Increase of reactive oxygen species (ROS) levels stimulates SIRT3 transcription, leading to SOD2 deacetylation and activation. SOD2-mediated ROS reduction is synergistically increased by SIRT3 co-expression, but is cancelled by SIRT3 depletion. These results reveal a new post-translational regulation of SOD2 by means of acetylation and SIRT3-dependent deacetylation in response to oxidative stress.

Journal ArticleDOI
TL;DR: At 24 months, survival was comparable in all treatment groups, but fewer CML-related deaths had occurred in both the nilotinib groups than in the imatinib group, and there were fewer progressions to accelerated or blast phase on treatment, including clonal evolution, in the nilotinib groups.
Abstract: Summary Background Nilotinib has shown greater efficacy than imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukaemia (CML) in chronic phase after a minimum follow-up of 12 months. We present data from the Evaluating Nilotinib Efficacy and Safety in clinical Trials–newly diagnosed patients (ENESTnd) study after a minimum follow-up of 24 months. Methods ENESTnd was a phase 3, multicentre, open-label, randomised study. Adult patients were eligible if they had been diagnosed with chronic phase, Philadelphia chromosome-positive CML within the previous 6 months. Patients were randomly assigned (1:1:1) to receive nilotinib 300 mg twice a day, nilotinib 400 mg twice a day, or imatinib 400 mg once a day, all administered orally, by use of a computer-generated randomisation schedule, using permuted blocks, and stratified according to Sokal score. Efficacy results are reported for the intention-to-treat population. The primary endpoint was major molecular response at 12 months, defined as BCR–ABL transcript levels on the International Scale (BCR–ABL IS ) of 0·1% or less by real-time quantitative PCR in peripheral blood. This study is registered with ClinicalTrials.gov, number NCT00471497. Findings 282 patients were randomly assigned to receive nilotinib 300 mg twice daily, 281 to receive nilotinib 400 mg twice daily, and 283 to receive imatinib. By 24 months, significantly more patients had a major molecular response with nilotinib than with imatinib (201 [71%] with nilotinib 300 mg twice daily, 187 [67%] with nilotinib 400 mg twice daily, and 124 [44%] with imatinib; p IS levels to ≤0·0032%) at any time than did those in the imatinib group (74 [26%] with nilotinib 300 mg twice daily, 59 [21%] with nilotinib 400 mg twice daily, and 29 [10%] with imatinib; p vs imatinib, p=0·0004 for nilotinib 400 mg twice daily vs imatinib). There were fewer progressions to accelerated or blast phase on treatment, including clonal evolution, in the nilotinib groups than in the imatinib group (two with nilotinib 300 mg twice daily, five with nilotinib 400 mg twice daily, and 17 with imatinib; p=0·0003 for nilotinib 300 mg twice daily vs imatinib, p=0·0089 for nilotinib 400 mg twice daily vs imatinib). At 24 months, survival was comparable in all treatment groups, but fewer CML-related deaths had occurred in both the nilotinib groups than in the imatinib group (five with nilotinib 300 mg twice daily, three with nilotinib 400 mg twice daily, and ten with imatinib). Overall, the only grade 3 or 4 non-haematological adverse events that occurred in at least 2·5% of patients were headache (eight [3%] with nilotinib 300 mg twice daily, four [1%] with nilotinib 400 mg twice daily, and two [ Interpretation Nilotinib continues to show better efficacy than imatinib for the treatment of patients with newly diagnosed CML in chronic phase. These results support nilotinib as a first-line treatment option for patients with newly diagnosed disease. Funding Novartis.

Journal ArticleDOI
TL;DR: The Forkhead Box M1 (FOXM1) transcription factor is identified as a common critical phosphorylation target for CDK4/6 inhibition and its role in maintaining expression of G1/S phase genes, suppress the levels of reactive oxygen species (ROS), and protect cancer cells from senescence is identified.

Journal ArticleDOI
10 Jun 2011-Cell
TL;DR: Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain, and it extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntington's disease.

Journal ArticleDOI
09 Dec 2011-Cell
TL;DR: It is shown that transient inhibition of HNF4α initiates hepatocellular transformation through a microRNA-inflammatory feedback loop circuit consisting of miR-124, IL6R, STAT3,MiR-24, and mi R-629, which maintains suppression of H NF4α and sustains oncogenesis.

Journal ArticleDOI
TL;DR: The function of DNA methylation in plants and animals is discussed in this review, and multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway.
Abstract: DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review.

Journal ArticleDOI
F Langenbucher1
TL;DR: The quantitative interpretation of dissolution rate data is greatly facilitated by the application of a general mathematical expression which describes the entire curve in terms of meaningful parameters.
Abstract: The quantitative interpretation of dissolution rate data is greatly facilitated by the application of a general mathematical expression which describes the entire curve in terms of meaningful parameters. In special case, the equation can be derived from a theoretical treatment of the process, e.g. the cube-root law or zero-order kinetics, see Wagner (1970). In the most general case of tablets, coated tablets, capsules, or sustained-release preparations, however, no such theoretical basis is available and a suitable function has to be found empirically. First-order kinetics were proposed by Gibaldi & Feldman (1967) and Wagner (1969) introduced the lognormal presentation for this purpose. Although these two models together describe most dissolution curves observed, they exclude each other and are, thus, of limited applicability: for example, see the discussion of Wagner (1970) relative to Figs. 20.2 and 20.3. A more general function which may be applied successfully to all common types of dissolution curves, was described by Weibull (1951). All characteristics of this distribution function are discussed in detail by Kao (1959) and Ruzicka (1962). A concise survey is given by Grant (1964). When applied to dissolution rate data, the Weibull equation expresses the accumulated fraction, m, of the material in solution at time t, by

Journal ArticleDOI
TL;DR: The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling and to invite the original authors to contribute their results, make them publicly available, share them with other users and to become members of the growing research community.
Abstract: The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling. The platform consists of two major subsystems: the database of experimental measurements and the modeling framework. A user-contributed database contains a set of tools for easy input, search and modification of thousands of records. The OCHEM database is based on the wiki principle and focuses primarily on the quality and verifiability of the data. The database is tightly integrated with the modeling framework, which supports all the steps required to create a predictive model: data search, calculation and selection of a vast variety of molecular descriptors, application of machine learning methods, validation, analysis of the model and assessment of the applicability domain. As compared to other similar systems, OCHEM is not intended to re-implement the existing tools or models but rather to invite the original authors to contribute their results, make them publicly available, share them with other users and to become members of the growing research community. Our intention is to make OCHEM a widely used platform to perform the QSPR/QSAR studies online and share it with other users on the Web. The ultimate goal of OCHEM is collecting all possible chemoinformatics tools within one simple, reliable and user-friendly resource. The OCHEM is free for web users and it is available online at http://www.ochem.eu.

Journal ArticleDOI
TL;DR: In vivo evaluation of compound 1h showed significant antitumor activity in RT112 bladder cancer xenografts models overexpressing wild-type FGFR3 and support the potential therapeutic use of 1h as a new anticancer agent.
Abstract: A novel series of N-aryl-N′-pyrimidin-4-yl ureas has been optimized to afford potent and selective inhibitors of the fibroblast growth factor receptor tyrosine kinases 1, 2, and 3 by rationally designing the substitution pattern of the aryl ring. On the basis of its in vitro profile, compound 1h (NVP-BGJ398) was selected for in vivo evaluation and showed significant antitumor activity in RT112 bladder cancer xenografts models overexpressing wild-type FGFR3. These results support the potential therapeutic use of 1h as a new anticancer agent.

Journal ArticleDOI
TL;DR: Visual acuity in SUSTAIN patients with individualized re-treatment based on VA/optical coherence tomography assessment reached on average a maximum after the first 3 monthly injections, decreased slightly under PRN during the next 2 to 3 months, and was then sustained throughout the treatment period.

Journal ArticleDOI
28 Jul 2011-Nature
TL;DR: The identification of 7α,25-dihydroxycholesterol as a potent and selective agonist of EBI2 and its role in the adaptive immune response is described.
Abstract: The EBI2 receptor (Epstein–Barr virus-induced gene 2, also known as GPR183) was recently shown to be linked to autoimmune disease, and is a critical regulator of the humoral immune response. It is a G-protein-coupled receptor, and its natural ligand has been unknown. Two groups now bring an end to the 'orphan' status of this receptor with identification of specific oxysterols as its natural ligands. The most potent ligand and activator is 7a,25-dihydroxycholesterol, and the EBI2–oxysterol signalling pathway has an important role in the adaptive immune response. Epstein–Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases1,2,3. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7α,25-dihydroxycholesterol (also called 7α,25-OHC or 5-cholesten-3β,7α,25-triol) as a potent and selective agonist of EBI2. Functional activation of human EBI2 by 7α,25-OHC and closely related oxysterols was verified by monitoring second messenger readouts and saturable, high-affinity radioligand binding. Furthermore, we find that 7α,25-OHC and closely related oxysterols act as chemoattractants for immune cells expressing EBI2 by directing cell migration in vitro and in vivo. A critical enzyme required for the generation of 7α,25-OHC is cholesterol 25-hydroxylase (CH25H)4. Similar to EBI2 receptor knockout mice, mice deficient in CH25H fail to position activated B cells within the spleen to the outer follicle and mount a reduced plasma cell response after an immune challenge. This demonstrates that CH25H generates EBI2 biological activity in vivo and indicates that the EBI2–oxysterol signalling pathway has an important role in the adaptive immune response.

Journal ArticleDOI
TL;DR: In the per-protocol population (293 patients), BCVA, measured by Early Treatment Diabetic Retinopathy Study-like charts, increased from baseline to month 12 by 4.9, and at month 12, BCVA gain in the monthly regimen was higher than that of the quarterly regimens.