scispace - formally typeset
Search or ask a question
Institution

Motorola

CompanySchaumburg, Illinois, United States
About: Motorola is a company organization based out in Schaumburg, Illinois, United States. It is known for research contribution in the topics: Signal & Communications system. The organization has 27298 authors who have published 38274 publications receiving 968710 citations. The organization is also known as: Motorola, Inc. & Galvin Manufacturing Corporation.


Papers
More filters
Journal ArticleDOI
04 Apr 2002-Nature
TL;DR: A chemical-vapour deposition method with gas-phase catalyst delivery is used to direct the assembly of carbon nanotubes in a variety of predetermined orientations onto silicon/silica substrates, building them into one-, two- and three-dimensional arrangements.
Abstract: Cunning refinements help to customize the architecture of nanotube structures. Nanoscale structures need to be arranged into well-defined configurations in order to build integrated systems. Here we use a chemical-vapour deposition method with gas-phase catalyst delivery to direct the assembly of carbon nanotubes in a variety of predetermined orientations onto silicon/silica substrates, building them into one-, two- and three-dimensional arrangements. The preference of nanotubes to grow selectively on and normal to silica surfaces forces them to inherit the lithographically machined template topography of their substrates, allowing the sites of nucleation and the direction of growth to be controlled.

471 citations

Patent
Louis C. Parrillo1
16 Nov 1992
TL;DR: A transceiver and additional memory are connected to the microprocessor in a vehicle so that all, or selected portions, of operating data is stored in the memory and periodically transmitted to a remote station as mentioned in this paper.
Abstract: A transceiver and additional memory are connected to the microprocessor in a vehicle so that all, or selected portions, of operating data is stored in the memory and periodically transmitted to a remote station. The data is diagnosed at the remote station and, for minor repairs, a fix is transmitted back to the vehicle. The information for a large population of vehicles is used by the manufacturer to determine if a problem is generic to a specific model and to generate repairs and/or model changes.

471 citations

Proceedings ArticleDOI
27 Nov 2000
TL;DR: Simulation results verify that in a slow fading environment the proposed space-frequency OFDM (SF-OFDM) transmitter diversity technique has the same performance as a previously reported space-time OFDM [ST-OF DM] transmitter diversity system but shows better performance in the more difficult fast fading environments.
Abstract: A transmitter diversity technique for wireless communications over frequency selective fading channels is presented. The proposed technique utilizes orthogonal frequency division multiplexing (OFDM) to transform a frequency selective fading channel into multiple flat fading subchannels on which space-frequency processing is applied. Simulation results verify that in a slow fading environment the proposed space-frequency OFDM (SF-OFDM) transmitter diversity technique has the same performance as a previously reported space-time OFDM (ST-OFDM) transmitter diversity system but shows better performance in the more difficult fast fading environments. Other implementation advantages of SF-OFDM over the ST-OFDM transmitter diversity technique are also discussed.

471 citations

Journal ArticleDOI
21 May 2003
TL;DR: How the memory operates is described, including significant aspects of reading, writing, and integration of the magnetic material with CMOS, which enabled the recent demonstration of a 1-Mbit memory chip.
Abstract: Magnetoresistive random access memory (MRAM) technology combines a spintronic device with standard silicon-based microelectronics to obtain a combination of attributes not found in any other memory technology. Key attributes of MRAM technology are nonvolatility and unlimited read and write endurance. Magnetic tunnel junction (MTJ) devices have several advantages over other magnetoresistive devices for use in MRAM cells, such as a large signal for the read operation and a resistance that can be tailored to the circuit. Due to these attributes, MTJ MRAM can operate at high speed and is expected to have competitive densities when commercialized. In this paper, we review our recent progress in the development of MTJ-MRAM technology. We describe how the memory operates, including significant aspects of reading, writing, and integration of the magnetic material with CMOS, which enabled our recent demonstration of a 1-Mbit memory chip. Important memory attributes are compared between MRAM and other memory technologies.

471 citations

Journal ArticleDOI
TL;DR: In this paper, a decoupled mode-space solution was proposed for modeling electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors in the ballistic limit.
Abstract: In this article, we present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors in the ballistic limit. The proposed simulation scheme, which solves the nonequilibrium Green’s function equations self-consistently with Poisson’s equation, is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results from this method are benchmarked against solutions from a rigorous two-dimensional discretization of the device Hamiltonian in real space. While doing so, the inherent approximations, regime of validity and the computational efficiency of the mode-space solution are highlighted and discussed. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This article shows that the decoupled mode-space solution is an efficient and accurate simulation method for modeling e...

470 citations


Authors

Showing all 27298 results

NameH-indexPapersCitations
Georgios B. Giannakis137132173517
Yonggang Huang13679769290
Chenming Hu119129657264
Theodore S. Rappaport11249068853
Chang Ming Li9789642888
John Kim9040641986
James W. Hicks8940651636
David Blaauw8775029855
Mark Harman8350629118
Philippe Renaud7777326868
Aggelos K. Katsaggelos7694626196
Min Zhao7154724549
Weidong Shi7052816368
David Pearce7034225680
Douglas L. Jones7051221596
Network Information
Related Institutions (5)
Intel
68.8K papers, 1.6M citations

93% related

Samsung
163.6K papers, 2M citations

91% related

Hewlett-Packard
59.8K papers, 1.4M citations

89% related

IBM
253.9K papers, 7.4M citations

89% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
20229
202129
2020131
2019134
2018144