scispace - formally typeset
Search or ask a question
Institution

Samsung

CompanySeoul, South Korea
About: Samsung is a company organization based out in Seoul, South Korea. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134067 authors who have published 163691 publications receiving 2057505 citations. The organization is also known as: Samsung Group & Samsung chaebol.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes an improved Network-MIMO TDD architecture achieving spectral efficiencies comparable with "Massive MIMO", with one order of magnitude fewer antennas per active user per cell (roughly, from 500 to 50 antennas).
Abstract: Time-Division Duplexing (TDD) allows to estimate the downlink channels for an arbitrarily large number of base station antennas from a finite number of orthogonal uplink pilot signals, by exploiting channel reciprocity. Based on this observation, a recently proposed "Massive MIMO" scheme was shown to achieve unprecedented spectral efficiency in realistic conditions of distance-dependent pathloss and channel coherence time and bandwidth. The main focus and contribution of this paper is an improved Network-MIMO TDD architecture achieving spectral efficiencies comparable with "Massive MIMO", with one order of magnitude fewer antennas per active user per cell (roughly, from 500 to 50 antennas). The proposed architecture is based on a family of Network-MIMO schemes defined by small clusters of cooperating base stations, zero-forcing multiuser MIMO precoding with suitable inter-cluster interference mitigation constraints, uplink pilot signals allocation and frequency reuse across cells. The key idea consists of partitioning the users into equivalence classes, optimizing the Network-MIMO scheme for each equivalence class, and letting a scheduler allocate the channel time-frequency dimensions to the different classes in order to maximize a suitable network utility function that captures a desired notion of fairness. This results in a mixed-mode Network-MIMO architecture, where different schemes, each of which is optimized for the served user equivalence class, are multiplexed in time-frequency. In order to carry out the performance analysis and the optimization of the proposed architecture in a systematic and computationally efficient way, we consider the large-system regime where the number of users, the number of antennas, and the channel coherence block length go to infinity with fixed ratios.

438 citations

Patent
Yong-Hoon Son1, Jong-wook Lee1
03 Nov 2008
TL;DR: In this article, a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate are provided, each gate pattern being between a lower interlayer layer and a neighboring upper interlayer surface layer.
Abstract: In a semiconductor device, and a method of manufacturing thereof, the device includes a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.

438 citations

Patent
Soo Won Suh1, In Young Kim1, In Wook Choo1, Young Soo Do1, Sung Wook Choo1 
22 May 1997
TL;DR: In this article, a flexible self-expandable stent with a reverse flow preventing valve is described. But the stent can be disposed in a curved lumina, and it can flexibly correspond to the curvature of the lumina and prevent the reverse flow of foodstuffs or fluids.
Abstract: A flexible self-expandable stent comprises a plurality of radially cylindrical elastic units spaced at fixed intervals, a cylindrical cover fixing member which sheaths the cylindrical elastic units, and a reverse flow preventing valve. The reverse flow preventing valve is attached to the inner wall of the stent, for preventing food-stuffs or fluids from flowing from a downstream side to an upstream side. The flexible self-expandable stent exhibits improved flexibility so that when the stent is disposed in a curved lumina, it can flexibly correspond to the curvature of the lumina and prevent the reverse flow of foodstuffs or fluids by use of the reverse flow preventing valve.

434 citations

Journal ArticleDOI
TL;DR: The authors reveal that the voltage of anion redox is strongly affected by structural changes that occur during battery cycling, explaining its unique electrochemical properties.
Abstract: Lithium-rich layered transition metal oxide positive electrodes offer access to anion redox at high potentials, thereby promising high energy densities for lithium-ion batteries. However, anion redox is also associated with several unfavorable electrochemical properties, such as open-circuit voltage hysteresis. Here we reveal that in Li1.17-x Ni0.21Co0.08Mn0.54O2, these properties arise from a strong coupling between anion redox and cation migration. We combine various X-ray spectroscopic, microscopic, and structural probes to show that partially reversible transition metal migration decreases the potential of the bulk oxygen redox couple by > 1 V, leading to a reordering in the anionic and cationic redox potentials during cycling. First principles calculations show that this is due to the drastic change in the local oxygen coordination environments associated with the transition metal migration. We propose that this mechanism is involved in stabilizing the oxygen redox couple, which we observe spectroscopically to persist for 500 charge/discharge cycles.

434 citations

Journal ArticleDOI
Il-Koo Kim1, Min Jung-Hye1, Tammy Lee1, Woo-Jin Han2, Jeong-Hoon Park1 
TL;DR: Technical details of the block partitioning structure of HEVC are introduced with an emphasis on the method of designing a consistent framework by combining the three different units together and experimental results are provided to justify the role of each component.
Abstract: High Efficiency Video Coding (HEVC) is the latest joint standardization effort of ITU-T WP 3/16 and ISO/IEC JTC 1/SC 29/WG 11. The resultant standard will be published as twin text by ITU-T and ISO/IEC; in the latter case, it will also be known as MPEG-H Part 2. This paper describes the block partitioning structure of the draft HEVC standard and presents the results of an analysis of coding efficiency and complexity. Of the many new technical aspects of HEVC, the block partitioning structure has been identified as representing one of the most significant changes relative to previous video coding standards. In contrast to the fixed size 16 × 16 macroblock structure of H.264/AVC, HEVC defines three different units according to their functionalities. The coding unit defines a region sharing the same prediction mode, e.g., intra and inter, and it is represented by the leaf node of a quadtree structure. The prediction unit defines a region sharing the same prediction information. The transform unit, specified by another quadtree, defines a region sharing the same transformation. This paper introduces technical details of the block partitioning structure of HEVC with an emphasis on the method of designing a consistent framework by combining the three different units together. Experimental results are provided to justify the role of each component of the block partitioning structure and a comparison with the H.264/AVC design is performed.

433 citations


Authors

Showing all 134111 results

NameH-indexPapersCitations
Yi Cui2201015199725
Hyun-Chul Kim1764076183227
Hannes Jung1592069125069
Yongsun Kim1562588145619
Yu Huang136149289209
Robert W. Heath128104973171
Shuicheng Yan12381066192
Shi Xue Dou122202874031
Young Hee Lee122116861107
Alan L. Yuille11980478054
Yang-Kook Sun11778158912
Sang Yup Lee117100553257
Guoxiu Wang11765446145
Richard G. Baraniuk10777057550
Jef D. Boeke10645652598
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

93% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

90% related

IBM
253.9K papers, 7.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202289
20213,060
20205,735
20195,994
20185,885