scispace - formally typeset
Search or ask a question
Institution

Samsung

CompanySeoul, South Korea
About: Samsung is a company organization based out in Seoul, South Korea. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134067 authors who have published 163691 publications receiving 2057505 citations. The organization is also known as: Samsung Group & Samsung chaebol.


Papers
More filters
Journal ArticleDOI
TL;DR: A new transformation estimation algorithm using the L2E estimator is applied to non-rigid registration for building robust sparse and dense correspondences and greatly outperforms state-of-the-art methods, particularly when the data contains severe outliers.
Abstract: We introduce a new transformation estimation algorithm using the $L_{2}E$ estimator and apply it to non-rigid registration for building robust sparse and dense correspondences. In the sparse point case, our method iteratively recovers the point correspondence and estimates the transformation between two point sets. Feature descriptors such as shape context are used to establish rough correspondence. We then estimate the transformation using our robust algorithm. This enables us to deal with the noise and outliers which arise in the correspondence step. The transformation is specified in a functional space, more specifically a reproducing kernel Hilbert space. In the dense point case for nonrigid image registration, our approach consists of matching both sparsely and densely sampled SIFT features, and it has particular advantages in handling significant scale changes and rotations. The experimental results show that our approach greatly outperforms state-of-the-art methods, particularly when the data contains severe outliers.

227 citations

Patent
Yong-Seok Cho1, Won-Sang Park1
25 Mar 2009
TL;DR: In this paper, a pixel electrode is provided at a side part of the second protrusions to face the common electrode for controlling an alignment of molecules of the liquid crystal material.
Abstract: A liquid crystal display includes a first substrate, a second substrate, a liquid crystal material interposed between the first and second substrates. The liquid crystal display includes first protrusions and second protrusions that are alternately disposed with each other on the first substrate. A common electrode is provided at a side part of the first protrusions, and a pixel electrode is provided at a side part of the second protrusions to face the common electrode. A lateral electric field is generated between the common electrode and the pixel electrode facing each other for controlling an alignment of molecules of the liquid crystal material.

227 citations

Proceedings ArticleDOI
15 Jun 2010
TL;DR: A PRAM cell with great scalability and high speed operation capability with excellent reliability below 20nm technology was demonstrated and the excellent writing endurance performance was predicted to maintain up to 6.5E15cycles by reset program energy acceleration.
Abstract: A PRAM cell with great scalability and high speed operation capability with excellent reliability below 20nm technology was demonstrated. This has the meaning of the potential applicable to the technology area of scaling limitation of DRAM cell. We fabricated a confined PRAM cell with 7.5nm×17nm of below 4F2. In particular, Sb-rich Ge-Sb-Te phase change material was employed for high speed operation below 30nsec. The excellent writing endurance performance was predicted to maintain up to 6.5E15cycles by reset program energy acceleration. Its data retention was 4.5 years at 85°C which is enough for DRAM application.

227 citations

Journal ArticleDOI
24 Jan 2012-ACS Nano
TL;DR: A group IVA based nanotube heterostructure array, consisting of a high-capacity Si inner layer and a highly conductive Ge outer layer, to yield both favorable mechanics and kinetics in battery applications.
Abstract: Problems related to tremendous volume changes associated with cycling and the low electron conductivity and ion diffusivity of Si represent major obstacles to its use in high-capacity anodes for lithium ion batteries. We have developed a group IVA based nanotube heterostructure array, consisting of a high-capacity Si inner layer and a highly conductive Ge outer layer, to yield both favorable mechanics and kinetics in battery applications. This type of Si/Ge double-layered nanotube array electrode exhibits improved electrochemical performances over the analogous homogeneous Si system, including stable capacity retention (85% after 50 cycles) and doubled capacity at a 3C rate. These results stem from reduced maximum hoop strain in the nanotubes, supported by theoretical mechanics modeling, and lowered activation energy barrier for Li diffusion. This electrode technology creates opportunities in the development of group IVA nanotube heterostructures for next generation lithium ion batteries.

227 citations

Journal ArticleDOI
TL;DR: In this article, a carbon nanotube-based field emission display (FED) was fabricated using well-aligned nanotubes on a glass substrate by paste squeeze and surface rubbing techniques.

226 citations


Authors

Showing all 134111 results

NameH-indexPapersCitations
Yi Cui2201015199725
Hyun-Chul Kim1764076183227
Hannes Jung1592069125069
Yongsun Kim1562588145619
Yu Huang136149289209
Robert W. Heath128104973171
Shuicheng Yan12381066192
Shi Xue Dou122202874031
Young Hee Lee122116861107
Alan L. Yuille11980478054
Yang-Kook Sun11778158912
Sang Yup Lee117100553257
Guoxiu Wang11765446145
Richard G. Baraniuk10777057550
Jef D. Boeke10645652598
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

93% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

90% related

IBM
253.9K papers, 7.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202289
20213,060
20205,735
20195,994
20185,885