scispace - formally typeset
Search or ask a question
Institution

Samsung

CompanySeoul, South Korea
About: Samsung is a company organization based out in Seoul, South Korea. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134067 authors who have published 163691 publications receiving 2057505 citations. The organization is also known as: Samsung Group & Samsung chaebol.


Papers
More filters
Journal ArticleDOI
TL;DR: Reinforcement learning-based dynamic pricing algorithm can effectively work without a priori information about the system dynamics and the proposed energy consumption scheduling algorithm further reduces the system cost thanks to the learning capability of each customer.
Abstract: In this paper, we study a dynamic pricing and energy consumption scheduling problem in the microgrid where the service provider acts as a broker between the utility company and customers by purchasing electric energy from the utility company and selling it to the customers. For the service provider, even though dynamic pricing is an efficient tool to manage the microgrid, the implementation of dynamic pricing is highly challenging due to the lack of the customer-side information and the various types of uncertainties in the microgrid. Similarly, the customers also face challenges in scheduling their energy consumption due to the uncertainty of the retail electricity price. In order to overcome the challenges of implementing dynamic pricing and energy consumption scheduling, we develop reinforcement learning algorithms that allow each of the service provider and the customers to learn its strategy without a priori information about the microgrid. Through numerical results, we show that the proposed reinforcement learning-based dynamic pricing algorithm can effectively work without a priori information about the system dynamics and the proposed energy consumption scheduling algorithm further reduces the system cost thanks to the learning capability of each customer.

231 citations

Proceedings Article
01 Jun 2006
TL;DR: The Vertical-Stacked-Array-Transistor (VSAT) as discussed by the authors is a 3D NAND flash memory device, which combines PIPE with vertical stacked array transistors to achieve ultra-high-density Flash memory chip and solid-state-drive (SSD) applications.
Abstract: A novel 3-D NAND flash memory device, VSAT (Vertical-Stacked-Array-Transistor), has successfully been achieved. The VSAT was realized through a cost-effective and straightforward process called PIPE (planarized-Integration-on-the-same-plane). The VSAT combined with PIPE forms a unique 3-D vertical integration method that may be exploited for ultra-high-density Flash memory chip and solid-state-drive (SSD) applications. The off-current level in the polysilicon-channel transistor dramatically decreases by five orders of magnitude by using an ultra-thin body of 20 nm thick and a double-gate-in-series structure. In addition, hydrogen annealing improves the subthreshold swing and the mobility of the polysilicon-channel transistor.

231 citations

Journal ArticleDOI
TL;DR: A 128-Mb multilevel NAND flash memory storing 2 b per cell, made practical by significantly reducing program disturbance by using a local self-boosting scheme, for mass storage, low cost, and high serial access throughput.
Abstract: For a quantum step in further cost reduction, the multilevel cell concept has been combined with the NAND flash memory. Key requirements of mass storage, low cost, and high serial access throughput have been achieved by sacrificing fast random access performance. This paper describes a 128-Mb multilevel NAND flash memory storing 2 b per cell. Multilevel storage is achieved through tight cell threshold voltage distribution of 0.4 V and is made practical by significantly reducing program disturbance by using a local self-boosting scheme. An intelligent page buffer enables cell-by-cell and state-by-state program and inhibit operations. A read throughput of 14.0 MB/s and a program throughput of 0.5 MB/s are achieved. The device has been fabricated with 0.4-/spl mu/m CMOS technology, resulting in a 117 mm/sup 2/ die size and a 1.1 /spl mu/m/sup 2/ effective cell size.

231 citations

Patent
19 Jan 2001
TL;DR: In this article, a method of forming a metal nitride film using chemical vapor deposition (CVD), and a method for forming metal contact and a semiconductor capacitor of a semiconducted device using the same, are provided.
Abstract: A method of forming a metal nitride film using chemical vapor deposition (CVD), and a method of forming a metal contact and a semiconductor capacitor of a semiconductor device using the same, are provided. The method of forming a metal nitride film using chemical vapor deposition (CVD) in which a metal source and a nitrogen source are used as a precursor, includes the steps of inserting a semiconductor substrate into a deposition chamber, flowing the metal source into the deposition chamber, removing the metal source remaining in the deposition chamber by cutting off the inflow of the metal source and flowing a purge gas into the deposition chamber, cutting off the purge gas and flowing the nitrogen source into the deposition chamber to react with the metal source adsorbed on the semiconductor substrate, and removing the nitrogen source remaining in the deposition chamber by cutting off the inflow of the nitrogen source and flowing the purge gas into the deposition chamber. Accordingly, the metal nitride film having low resistivity and a low content of Cl even with excellent step coverage can be formed at a temperature of 500° C. or lower, and a semiconductor capacitor having excellent leakage current characteristics can be manufactured. Also, a deposition speed, approximately 20 A/cycle, is suitable for mass production.

230 citations

Journal ArticleDOI
TL;DR: Mechanically durable stretchable transistors are fabricated using carbon nanotube electrical components and tough thermoplastic elastomers to create devices that can be impacted with a hammer and punctured with a needle while remaining functional and stretchable.
Abstract: Mechanically durable stretchable trans-istors are fabricated using carbon nanotube electrical components and tough thermoplastic elastomers. After an initial conditioning step, the electrical characteristics remain constant with strain. The strain-dependent characteristics are similar in orthogonal stretching directions. Devices can be impacted with a hammer and punctured with a needle while remaining functional and stretchable.

230 citations


Authors

Showing all 134111 results

NameH-indexPapersCitations
Yi Cui2201015199725
Hyun-Chul Kim1764076183227
Hannes Jung1592069125069
Yongsun Kim1562588145619
Yu Huang136149289209
Robert W. Heath128104973171
Shuicheng Yan12381066192
Shi Xue Dou122202874031
Young Hee Lee122116861107
Alan L. Yuille11980478054
Yang-Kook Sun11778158912
Sang Yup Lee117100553257
Guoxiu Wang11765446145
Richard G. Baraniuk10777057550
Jef D. Boeke10645652598
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

93% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

90% related

IBM
253.9K papers, 7.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202289
20213,060
20205,735
20195,994
20185,885