scispace - formally typeset
Search or ask a question

Showing papers by "Institut national de la recherche agronomique published in 2012"


Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance.
Abstract: Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.

4,981 citations


Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations


Journal ArticleDOI
TL;DR: The most complete human lncRNA annotation to date is presented, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts, and expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes.
Abstract: The human genome contains many thousands of long noncoding RNAs (lncRNAs). While several studies have demonstrated compelling biological and disease roles for individual examples, analytical and experimental approaches to investigate these genes have been hampered by the lack of comprehensive lncRNA annotation. Here, we present and analyze the most complete human lncRNA annotation to date, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts. Our analyses indicate that lncRNAs are generated through pathways similar to that of protein-coding genes, with similar histone-modification profiles, splicing signals, and exon/intron lengths. In contrast to protein-coding genes, however, lncRNAs display a striking bias toward two-exon transcripts, they are predominantly localized in the chromatin and nucleus, and a fraction appear to be preferentially processed into small RNAs. They are under stronger selective pressure than neutrally evolving sequences-particularly in their promoter regions, which display levels of selection comparable to protein-coding genes. Importantly, about one-third seem to have arisen within the primate lineage. Comprehensive analysis of their expression in multiple human organs and brain regions shows that lncRNAs are generally lower expressed than protein-coding genes, and display more tissue-specific expression patterns, with a large fraction of tissue-specific lncRNAs expressed in the brain. Expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes. This GENCODE annotation represents a valuable resource for future studies of lncRNAs.

4,291 citations


Journal ArticleDOI
Shusei Sato, Satoshi Tabata, Hideki Hirakawa, Erika Asamizu  +320 moreInstitutions (51)
31 May 2012-Nature
TL;DR: A high-quality genome sequence of domesticated tomato is presented, a draft sequence of its closest wild relative, Solanum pimpinellifolium, is compared, and the two tomato genomes are compared to each other and to the potato genome.
Abstract: Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.

2,687 citations


Journal ArticleDOI
29 Nov 2012-Nature
TL;DR: In this article, the authors draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes.
Abstract: Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity(1). One primary cause of productivity loss and plant mortality during drought is hydraulic failure(2-4). Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe(5,6). Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk(7,8).

1,864 citations


Journal ArticleDOI
TL;DR: The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs.
Abstract: Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non...

1,482 citations


Journal ArticleDOI
29 Nov 2012-Nature
TL;DR: An integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context and suggests that post-transcriptional processing forms an important regulatory layer.
Abstract: Barley (Hordeum vulgare L.) is among the world's earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 'high-confidence' genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.

1,347 citations


Journal ArticleDOI
20 Apr 2012-Science
TL;DR: Simulated exposure events on free-ranging foragers labeled with a radio-frequency identification tag suggest that homing is impaired by thiamethoxam intoxication, which offers new insights into the consequences of common neonicotinoid pesticides used worldwide.
Abstract: Nonlethal exposure of honey bees to thiamethoxam (neonicotinoid systemic pesticide) causes high mortality due to homing failure at levels that could put a colony at risk of collapse. Simulated exposure events on free-ranging foragers labeled with a radio-frequency identification tag suggest that homing is impaired by thiamethoxam intoxication. These experiments offer new insights into the consequences of common neonicotinoid pesticides used worldwide.

1,201 citations


Journal ArticleDOI
Martien A. M. Groenen1, Alan Archibald2, Hirohide Uenishi, Christopher K. Tuggle3, Yasuhiro Takeuchi4, Max F. Rothschild3, Claire Rogel-Gaillard5, Chankyu Park6, Denis Milan7, Hendrik-Jan Megens1, Shengting Li8, Denis M. Larkin9, Heebal Kim10, Laurent A. F. Frantz1, Mario Caccamo11, Hyeonju Ahn10, Bronwen Aken12, Anna Anselmo13, Christian Anthon14, Loretta Auvil15, Bouabid Badaoui13, Craig W. Beattie16, Christian Bendixen8, Daniel Berman17, Frank Blecha18, Jonas Blomberg19, Lars Bolund8, Mirte Bosse1, Sara Botti13, Zhan Bujie8, Megan Bystrom3, Boris Capitanu15, Denise Carvalho-Silva20, Patrick Chardon5, Celine Chen21, Ryan Cheng3, Sang-Haeng Choi, William Chow12, Richard Clark12, C M Clee12, Richard P. M. A. Crooijmans1, Harry D. Dawson21, Patrice Dehais7, Fioravante De Sapio2, Bert Dibbits1, Nizar Drou11, Zhi-Qiang Du3, Kellye Eversole, João Fadista22, João Fadista8, Susan Fairley12, Thomas Faraut7, Geoffrey J. Faulkner22, Geoffrey J. Faulkner2, Katie E. Fowler23, Merete Fredholm14, Eric Fritz3, James G. R. Gilbert12, Elisabetta Giuffra13, Elisabetta Giuffra5, Jan Gorodkin14, Darren K. Griffin23, Jennifer Harrow12, Alexander Hayward24, Kerstin Howe12, Zhi-Liang Hu3, Sean Humphray22, Sean Humphray12, Toby Hunt12, Henrik Hornshøj8, Jin-Tae Jeon25, Patric Jern24, Matthew Jones12, Jerzy Jurka26, Hiroyuki Kanamori, Ronan Kapetanovic2, Jaebum Kim15, Jaebum Kim6, Jae-Hwan Kim, Kyu-Won Kim, Tae-Hun Kim, Greger Larson27, Kyooyeol Lee6, Kyung-Tai Lee, Richard M. Leggett11, Harris A. Lewin28, Yingrui Li, Wan Sheng Liu29, Jane E. Loveland12, Yao Lu, Joan K. Lunney17, Jian Ma15, Ole Madsen1, Katherine M. Mann17, Katherine M. Mann22, Lucy Matthews12, Stuart McLaren12, Takeya Morozumi, Michael P. Murtaugh30, Jitendra Narayan9, Dinh Truong Nguyen6, Peixiang Ni, Song-Jung Oh31, Suneel Kumar Onteru3, Frank Panitz8, Eung-Woo Park, Hong-Seog Park, Géraldine Pascal32, Yogesh Paudel1, Miguel Pérez-Enciso, Ricardo H. Ramirez-Gonzalez11, James M. Reecy3, Sandra L. Rodriguez-Zas15, Gary A. Rohrer17, Lauretta A. Rund15, Yongming Sang18, Kyle M. Schachtschneider15, Joshua G. Schraiber33, John C. Schwartz30, Linda Scobie34, Carol Scott12, Stephen M. J. Searle12, Bertrand Servin7, Bruce R. Southey15, Göran O. Sperber19, Peter F. Stadler35, Jonathan V. Sweedler15, Hakim Tafer35, Bo Thomsen8, Rashmi Wali34, Jian Wang, Jun Wang14, Simon D. M. White12, Xun Xu, Martine Yerle7, Guojie Zhang, Jianguo Zhang, Jie Zhang36, Shuhong Zhao36, Jane Rogers11, Carol Churcher12, Lawrence B. Schook15 
15 Nov 2012-Nature
TL;DR: The assembly and analysis of the genome sequence of a female domestic Duroc pig and a comparison with the genomes of wild and domestic pigs from Europe and Asia reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago.
Abstract: For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.

1,189 citations


Journal ArticleDOI
TL;DR: The six principles of green-extraction are introduced, describing a multifaceted strategy to apply this concept at research and industrial level, and offer an updated glimpse of the huge technological effort that is being made and the diverse applications that are being developed.
Abstract: The design of green and sustainable extraction methods of natural products is currently a hot research topic in the multidisciplinary area of applied chemistry, biology and technology. Herein we aimed to introduce the six principles of green-extraction, describing a multifaceted strategy to apply this concept at research and industrial level. The mainstay of this working protocol are new and innovative technologies, process intensification, agro-solvents and energy saving. The concept, principles and examples of green extraction here discussed, offer an updated glimpse of the huge technological effort that is being made and the diverse applications that are being developed.

1,145 citations


Journal ArticleDOI
TL;DR: Morphological and molecular identification demonstrated that the population of cyst nematodes from a wheat field in Aïn Jemâa, Morocco was H. latipons, a new record of H. avenae, and care should be taken to prevent the spread to other regions.
Abstract: From May to June 2011, during a survey of the wheat-growing areas in Meknes in the Sais Region of Morocco, several cyst nematode populations were detected. Sampling was performed 1 month before wheat (Triticum durum) harvest, in fields showing patches of stunted plants. Plants were growing poorly, had chlorotic lower leaves, and a reduced numbers of ears. Root systems were short and had a bushy appearance because of increased secondary root production. No cysts were visible on the roots, but were found in the soil. Cysts were collected from soil on 200-μm sieves by the modified Cobb decanting and sieving method (1) and identified by morphology and internal transcribed spacer (ITS)-rDNA sequencing. All isolates were identified as Heterodera avenae except the isolate from Ain Jemâa. From the latter, key morphological features from cysts and second-stage juveniles (J2) were determined. The cysts (n = 10) had the following characteristics: bifenestrate vulval cone, body length without neck 590 μm (551 to 632 μm), body width 393 μm (310 to 490 μm), neck length 75 μm (65 to 90 μm), fenestra length 64 μm (60 to 72 μm) and width 21 μm (18 to 25 μm), underbridge length 96 μm (85 to 115 μm), vulval slit length 8 μm (7 to 9 μm), vulva bridge width 27 μm (24 to 33 μm), and bullae absent. The J2s (n = 10) had the following characteristics: body length 445 μm (412 to 472 μm), body width 19 μm (19 to 21 μm), stylet length 24 μm (23 to 25 μm), four lateral lines, tail length 50 μm (46 to 54 μm), and hyaline terminal tail 28 μm (24 to 31 μm). Values of the morphological characters were within the range of H. latipons reported by Handoo (3). The bifenestrate cysts with a strong underbridge and no bullae and J2 with a tail length greater than 40 μm, a stylet longer than 15 μm, and four incisures in the lateral field were typical for H. latipons. To confirm the identification, molecular observations were made. DNA was extracted from three juveniles from three different cysts separately (4). The ITS-rDNA region was amplified using the primers 5'-CGT AAC AAG GTA GCT GTA G-3' and 5'-TCC TCC GCT AAA TGA TAT G-3' as described by Ferris et al. (2). This resulted in a 1,040-bp DNA fragment. The PCR-products were purified and sequenced (Macrogen, Inc., Seoul, Korea). All sequences obtained (GenBank Accession Nos. per cyst: JQ319035, JQ319036, and JQ319037) were compared with sequences available from the GenBank database ( www.ncbi.nlm.nih.gov ), including several species of Heterodera. This comparison revealed a sequence similarity of 97 to 99% with H. latipons and 89% or lower with any other species of Heterodera. Morphological and molecular identification demonstrated that the population of cyst nematodes from a wheat field in Ain Jemâa, Morocco was H. latipons. In the patches with poor growing plants, 65 cysts per 100 cm3 soil were found. To our knowledge, this detection represents a new record of H. latipons. Since the nematode can cause considerable damage to wheat, one of the main cereals produced in Morocco, care should be taken to prevent the spread to other regions. References: (1) K. R. Barker. Page 19 in: An Advanced Treatise on Meloidogyne. Vol II. Methodology. C. C. Carter and J. N. Sasser, eds. North Carolina State University Graphics, Raleigh, 1985. (2) V. R. Ferris et al. Fundam. Appl. Nematol. 16:177, 1993. (3) Z. A. Handoo. J. Nematol. 34:250, 2002. (4) M. Holterman et al. Mol. Biol. Evol. 23:1792, 2006.

Journal ArticleDOI
TL;DR: Culturomics complements metagenomics by overcoming the depth bias inherent in metagenomic approaches, and identifies 174 species never described previously in the human gut.

Journal ArticleDOI
TL;DR: A retrieval algorithm to deliver global soil moisture (SM) maps with a desired accuracy of 0.04 m3/m3 is given, discusses the caveats, and provides a glimpse of the Cal Val exercises.
Abstract: The Soil Moisture and Ocean Salinity (SMOS) mission is European Space Agency (ESA's) second Earth Explorer Opportunity mission, launched in November 2009. It is a joint program between ESA Centre National d'Etudes Spatiales (CNES) and Centro para el Desarrollo Tecnologico Industrial. SMOS carries a single payload, an L-Band 2-D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere, and hence the instrument probes the earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. The goal of the level 2 algorithm is thus to deliver global soil moisture (SM) maps with a desired accuracy of 0.04 m3/m3. To reach this goal, a retrieval algorithm was developed and implemented in the ground segment which processes level 1 to level 2 data. Level 1 consists mainly of angular brightness temperatures (TB), while level 2 consists of geophysical products in swath mode, i.e., as acquired by the sensor during a half orbit from pole to pole. In this context, a group of institutes prepared the SMOS algorithm theoretical basis documents to be used to produce the operational algorithm. The principle of the SM retrieval algorithm is based on an iterative approach which aims at minimizing a cost function. The main component of the cost function is given by the sum of the squared weighted differences between measured and modeled TB data, for a variety of incidence angles. The algorithm finds the best set of the parameters, e.g., SM and vegetation characteristics, which drive the direct TB model and minimizes the cost function. The end user Level 2 SM product contains SM, vegetation opacity, and estimated dielectric constant of any surface, TB computed at 42.5°, flags and quality indices, and other parameters of interest. This paper gives an overview of the algorithm, discusses the caveats, and provides a glimpse of the Cal Val exercises.

Journal ArticleDOI
TL;DR: Six previously unknown loci associated with fasting insulin at P < 5 × 10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals are presented.
Abstract: Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

Journal ArticleDOI
02 Mar 2012-Science
TL;DR: The transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature are reported, offering an initial understanding of why certain regulatory strategies may be favored during evolution of dynamic control systems.
Abstract: Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature. We comprehensively mapped transcription units (TUs) and grouped 2935 promoters into regulons controlled by various RNA polymerase sigma factors, accounting for ~66% of the observed variance in transcriptional activity. This global classification of promoters and detailed description of TUs revealed that a large proportion of the detected antisense RNAs arose from potentially spurious transcription initiation by alternative sigma factors and from imperfect control of transcription termination.

Journal ArticleDOI
TL;DR: It is highlighted that germination vigor depends on multiple biochemical and molecular variables and their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.
Abstract: Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using “-omics” approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.

Journal ArticleDOI
TL;DR: The numerous advantages of the pig model for infectious disease research and vaccine development are highlighted and a few examples of human microbial infectious diseases for which the use of pigs as animal models has contributed to the acquisition of new knowledge are documented.

Journal ArticleDOI
TL;DR: Findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.
Abstract: Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.

Journal ArticleDOI
TL;DR: Simulations suggest that the proposed multi-locus mixed model as a general method for mapping complex traits in structured populations outperforms existing methods in terms of power as well as false discovery rate.
Abstract: Population structure causes genome-wide linkage disequilibrium between unlinked loci, leading to statistical confounding in genome-wide association studies. Mixed models have been shown to handle the confounding effects of a diffuse background of large numbers of loci of small effect well, but they do not always account for loci of larger effect. Here we propose a multi-locus mixed model as a general method for mapping complex traits in structured populations. Simulations suggest that our method outperforms existing methods in terms of power as well as false discovery rate. We apply our method to human and Arabidopsis thaliana data, identifying new associations and evidence for allelic heterogeneity. We also show how a priori knowledge from an A. thaliana linkage mapping study can be integrated into our method using a Bayesian approach. Our implementation is computationally efficient, making the analysis of large data sets (n > 10,000) practicable.

Journal ArticleDOI
TL;DR: The status of global food security, i.e., the balance between the growing food demand of the world population and global agricultural output, combined with discrepancies between supply and demand at the regional, national, and local scales, is alarming as mentioned in this paper.
Abstract: The status of global food security, i.e., the balance between the growing food demand of the world population and global agricultural output, combined with discrepancies between supply and demand at the regional, national, and local scales (Smil 2000; UN Department of Economic and Social Affairs 2011; Ingram 2011), is alarming. This imbalance is not new (Dyson 1999) but has dramatically worsened during the recent decades, culminating recently in the 2008 food crisis. It is important to note that in mid-2011, food prices were back to their heights of the middle of the 2008 crisis (FAO 2011). Plant protection in general and the protection of crops against plant diseases in particular, have an obvious role to play in meeting the growing demand for food quality and quantity (Strange and Scott 2005). Roughly, direct yield losses caused by pathogens, animals, and weeds, are altogether responsible for losses ranging between 20 and 40 % of global agricultural productivity (Teng and Krupa 1980; Teng 1987; Oerke et al. 1994; Oerke 2006). Crop losses due to pests and pathogens are direct, as well as indirect; they have a number of facets, some with short-, and others with long-term consequences (Zadoks 1967). The phrase “losses between 20 and 40 %” therefore inadequately reflects the true costs of crop losses to consumers, public health, societies, environments, economic fabrics and farmers. The components of food security include food availability (production, import, reserves), physical and economic access to food, and food utilisation (e.g., nutritive value, safety), as has been recently reviewed by Ingram (2011). Although crop losses caused by plant disease directly affect the first of these components, they also affect others (e.g., the food utilisation component) directly or indirectly through the fabrics of trade, policies and societies (Zadoks 2008). Most of the agricultural research conducted in the 20th century focused on increasing crop productivity as the world population and its food needs grew (Evans 1998; Smil 2000; Nellemann et al. 2009). Plant protection then primarily focused on protecting crops from yield losses due to biological and non-biological causes. The problem remains as challenging today as in the 20th century, with additional complexity generated by the reduced room for manoeuvre available environmentally, economically, and socially (FAO 2011; Brown 2011). This results from shrinking natural resources that are available to agriculture: these include water, agricultural land, arable soil, biodiversity, the availability of non-renewable energy, human labour, fertilizers (Smil 2000), and the deployment of some key inputs, such as high quality seeds and planting material (Evans 1998). In addition to yield losses caused by diseases, these new elements of complexity also include post harvest quality losses and the possible accumulation of toxins during and after the S. Savary (*) : J.-N. Aubertot INRA, UMR1248 AGIR, 24 Chemin de Borde Rouge, Auzeville, CS52627, 31326 Castanet-Tolosan Cedex, France e-mail: Serge.Savary@toulouse.inra.fr

Journal ArticleDOI
19 Jul 2012-Nature
TL;DR: This work shows a marked increase in abundance of three types of generalist arthropod predators and a decreased abundance of aphid pests associated with widespread adoption of Bt cotton and reduced insecticide sprays in this crop.
Abstract: at 36 sites in six provinces of northern China, we show here a marked increase in abundance of three types of generalist arthropod predators (ladybirds, lacewings and spiders) and a decreased abundance of aphid pests associated with widespread adoption of Bt cotton and reduced insecticide sprays in this crop. We also found evidence that the predators might provide additional biocontrol services spilling over from Bt cotton fields onto neighbouring crops (maize, peanut and soybean). Our work extends results from general studies evaluating ecological effects of Bt crops 1–4,6,12,13 by demonstrating that such crops can promote biocontrol services in agricultural landscapes.

Journal ArticleDOI
TL;DR: Genomic structure in a global collection of domesticated sheep reveals a history of artificial selection for horn loss and traits relating to pigmentation, reproduction, and body size.
Abstract: Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.

Journal ArticleDOI
01 May 2012-Animal
TL;DR: The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems and those involving genetic selection for heat tolerance.
Abstract: Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate the potential selection response. With the development of molecular biotechnologies, new opportunities are available to characterize gene expression and identify key cellular responses to heat stress. These new tools will enable scientists to improve the accuracy and the efficiency of selection for heat tolerance. Epigenetic regulation of gene expression and thermal imprinting of the genome could also be an efficient method to improve thermal tolerance. Such techniques (e.g. perinatal heat acclimation) are currently being experimented in chicken.

Journal ArticleDOI
TL;DR: The aim is to up-date carbohydrate metabolism in fish, placing it to the context of these new experimental tools and its relationship to dietary intake and it is suggested that new research directions ultimately will lead to a better understanding of these processes.
Abstract: Teleost fishes represent a highly diverse group consisting of more than 20,000 species living across all aquatic environments. This group has significant economical, societal and environmental impacts, yet research efforts have concentrated primarily on salmonid and cyprinid species. This review examines carbohydrate/glucose metabolism and its regulation in these model species including the role of hormones and diet. Over the past decade, molecular tools have been used to address some of the downstream components of these processes and these are incorporated to better understand the roles played by carbohydrates and their regulatory paths. Glucose metabolism remains a contentious area as many fish species are traditionally considered glucose intolerant and, therefore, one might expect that the use and storage of glucose would be considered of minor importance. However, the actual picture is not so clear since the apparent intolerance of fish to carbohydrates is not evident in herbivorous and omnivorous species and even in carnivorous species, glucose is important for specific tissues and/or for specific activities. Thus, our aim is to up-date carbohydrate metabolism in fish, placing it to the context of these new experimental tools and its relationship to dietary intake. Finally, we suggest that new research directions ultimately will lead to a better understanding of these processes.

Journal ArticleDOI
TL;DR: Investigations on the molecular functions of septins have highlighted their roles as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization in numerous biological processes, including cell division and host–microorganism interactions.
Abstract: Septins belong to a family of proteins that is highly conserved in eukaryotes and is increasingly recognized as a novel component of the cytoskeleton. All septins are GTP-binding proteins that form hetero-oligomeric complexes and higher-order structures, including filaments and rings. Recent studies have provided structural information about the different levels of septin organization; however, the crucial structural determinants and factors responsible for septin assembly remain unclear. Investigations on the molecular functions of septins have highlighted their roles as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization in numerous biological processes, including cell division and host-microorganism interactions.

Journal ArticleDOI
TL;DR: It is found that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits and the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin.
Abstract: Whereas breeders have exploited diversity in maize for yield improvements, there has been limited progress in using beneficial alleles in undomesticated varieties. Characterizing standing variation in this complex genome has been challenging, with only a small fraction of it described to date. Using a population genetics scoring model, we identified 55 million SNPs in 103 lines across pre-domestication and domesticated Zea mays varieties, including a representative from the sister genus Tripsacum. We find that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits. By investigating the drivers of genome size variation, we find that the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin. In contrast, intraspecies genome size variation seems to be controlled by chromosomal knob content. There is tremendous overlap in key gene content in maize and Tripsacum, suggesting that adaptations from Tripsacum (for example, perennialism and frost and drought tolerance) can likely be integrated into maize.

Journal ArticleDOI
TL;DR: RBOHs may serve as important molecular 'hubs' during ROS-mediated signalling in plants during cell growth, plant development and plant response to abiotic environmental constraints and biotic interactions, both pathogenic and symbiotic.

Journal ArticleDOI
TL;DR: The gut microbiota associated with human obesity is depleted in M. smithii, and gut microbiota composition at the species level is related to body weight and obesity, which might be of relevance for further studies and the management of obesity.
Abstract: Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii

Journal ArticleDOI
TL;DR: Analysis of data on the extent of long-distance gene flow and theory that allows us to predict evolutionary responses of trees to climate change suggest that the positive effects of gene flow on adaptation may dominate in many instances.
Abstract: Forest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees. We critically review data on the extent of long-distance gene flow and summarise theory that allows us to predict evolutionary responses of trees to climate change. Estimates of long-distance gene flow based both on direct observations and on genetic methods provide evidence that genes can move over spatial scales larger than habitat shifts predicted under climate change within one generation. Both theoretical and empirical data suggest that the positive effects of gene flow on adaptation may dominate in many instances. The balance of positive to negative consequences of gene flow may, however, differ for leading edge, core and rear sections of forest distributions. We propose future experimental and theoretical research that would better integrate dispersal biology with evolutionary quantitative genetics and improve predictions of tree responses to climate change.

Journal ArticleDOI
TL;DR: One particular class of biased ligands has the ability to alter the balance between G protein-dependent and β-arrestin-dependent signal transduction and support the notion that biased agonists may identify new classes of therapeutic agents that have fewer side effects.
Abstract: The concept of biased agonism has recently come to the fore with the realization that seven-transmembrane receptors (7TMRs, also known as G protein–coupled receptors, or GPCRs) activate complex signaling networks and can adopt multiple active conformations upon agonist binding. As a consequence, the “efficacy” of receptors, which was classically considered linear, is now recognized as pluridimensional. Biased agonists selectively stabilize only a subset of receptor conformations induced by the natural “unbiased” ligand, thus preferentially activating certain signaling mechanisms. Such agonists thus reveal the intriguing possibility that one can direct cellular signaling with unprecedented precision and specificity and support the notion that biased agonists may identify new classes of therapeutic agents that have fewer side effects. This review focuses on one particular class of biased ligands that has the ability to alter the balance between G protein–dependent and β-arrestin-dependent signal transduction.