scispace - formally typeset
Open AccessJournal ArticleDOI

Extinction risk from climate change

TLDR
Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract
Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The fate of European breeding birds under climate, land- use and dispersal scenarios

TL;DR: In this paper, the authors used natal dispersal estimates and developed a probabilistic method that produced a dispersal scenario intermediate between the null and full dispersal scenarios, and compared results from all scenarios in terms of future predicted range changes, range shifts and variations in species richness.
Journal ArticleDOI

Time as an ecological constraint.

TL;DR: The linear programming approach identifies the realizable niche space within which a species can maintain coherent groups that are larger than the minimum viable group size (or density) and allows us to understand better why a given taxon can survive in some habitats but not others.
Journal ArticleDOI

Uncertainty of bioclimate envelope models based on the geographical distribution of species

TL;DR: The results from this study indicate that species’ geographical attributes highly influence the behaviour and uncertainty of species–climate models, which should be taken into account in biogeographical modelling studies and assessments of climate change impacts.
References
More filters
Journal ArticleDOI

Biodiversity hotspots for conservation priorities

TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Journal ArticleDOI

Climate change 2001: the scientific basis

TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Journal ArticleDOI

A globally coherent fingerprint of climate change impacts across natural systems

TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Book

Species Diversity in Space and Time

TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Related Papers (5)