scispace - formally typeset
Search or ask a question

Showing papers on "Genomics published in 2018"


Journal ArticleDOI
Rudi Appels1, Rudi Appels2, Kellye Eversole, Nils Stein3  +204 moreInstitutions (45)
17 Aug 2018-Science
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Abstract: An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.

2,118 citations


Journal ArticleDOI
TL;DR: This work used a concatenated protein phylogeny as the basis for a bacterial taxonomy that conservatively removes polyphyletic groups and normalizes taxonomic ranks on the basis of relative evolutionary divergence.
Abstract: Taxonomy is an organizing principle of biology and is ideally based on evolutionary relationships among organisms. Development of a robust bacterial taxonomy has been hindered by an inability to obtain most bacteria in pure culture and, to a lesser extent, by the historical use of phenotypes to guide classification. Culture-independent sequencing technologies have matured sufficiently that a comprehensive genome-based taxonomy is now possible. We used a concatenated protein phylogeny as the basis for a bacterial taxonomy that conservatively removes polyphyletic groups and normalizes taxonomic ranks on the basis of relative evolutionary divergence. Under this approach, 58% of the 94,759 genomes comprising the Genome Taxonomy Database had changes to their existing taxonomy. This result includes the description of 99 phyla, including six major monophyletic units from the subdivision of the Proteobacteria, and amalgamation of the Candidate Phyla Radiation into a single phylum. Our taxonomy should enable improved classification of uncultured bacteria and provide a sound basis for ecological and evolutionary studies.

2,098 citations


Journal ArticleDOI
24 Sep 2018
TL;DR: Developments in the BIGSdb software made from publication to June 2018 are described and it is shown how the platform realises microbial population genomics for a wide range of applications.
Abstract: The PubMLST.org website hosts a collection of open-access, curated databases that integrate population sequence data with provenance and phenotype information for over 100 different microbial species and genera. Although the PubMLST website was conceived as part of the development of the first multi-locus sequence typing (MLST) scheme in 1998 the software it uses, the Bacterial Isolate Genome Sequence database (BIGSdb, published in 2010), enables PubMLST to include all levels of sequence data, from single gene sequences up to and including complete, finished genomes. Here we describe developments in the BIGSdb software made from publication to June 2018 and show how the platform realises microbial population genomics for a wide range of applications. The system is based on the gene-by-gene analysis of microbial genomes, with each deposited sequence annotated and curated to identify the genes present and systematically catalogue their variation. Originally intended as a means of characterising isolates with typing schemes, the synthesis of sequences and records of genetic variation with provenance and phenotype data permits highly scalable (whole genome sequence data for tens of thousands of isolates) means of addressing a wide range of functional questions, including: the prediction of antimicrobial resistance; likely cross-reactivity with vaccine antigens; and the functional activities of different variants that lead to key phenotypes. There are no limitations to the number of sequences, genetic loci, allelic variants or schemes (combinations of loci) that can be included, enabling each database to represent an expanding catalogue of the genetic variation of the population in question. In addition to providing web-accessible analyses and links to third-party analysis and visualisation tools, the BIGSdb software includes a RESTful application programming interface (API) that enables access to all the underlying data for third-party applications and data analysis pipelines.

1,349 citations


Journal ArticleDOI
TL;DR: Two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences are presented, including the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum information about a Metagenome-Assembled Genomes (MIMAG), including estimates of genome completeness and contamination.
Abstract: We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.

1,171 citations


Journal ArticleDOI
TL;DR: The available scRNA-seq technologies and the strategies available to analyze the large quantities of data produced will impact both basic and medical science, from illuminating drug resistance in cancer to revealing the complex pathways of cell differentiation during development.
Abstract: Rapid progress in the development of next-generation sequencing (NGS) technologies in recent years has provided many valuable insights into complex biological systems, ranging from cancer genomics to diverse microbial communities. NGS-based technologies for genomics, transcriptomics, and epigenomics are now increasingly focused on the characterization of individual cells. These single-cell analyses will allow researchers to uncover new and potentially unexpected biological discoveries relative to traditional profiling methods that assess bulk populations. Single-cell RNA sequencing (scRNA-seq), for example, can reveal complex and rare cell populations, uncover regulatory relationships between genes, and track the trajectories of distinct cell lineages in development. In this review, we will focus on technical challenges in single-cell isolation and library preparation and on computational analysis pipelines available for analyzing scRNA-seq data. Further technical improvements at the level of molecular and cell biology and in available bioinformatics tools will greatly facilitate both the basic science and medical applications of these sequencing technologies.

1,133 citations


Journal ArticleDOI
06 Jun 2018-Nature
TL;DR: The genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study is characterized, and it is shown that protein quantitative trait loci overlap with gene expression quantitative traits, as well as with disease-associated loci, and evidence that protein biomarkers have causal roles in disease is found.
Abstract: Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.

961 citations


Journal ArticleDOI
25 Apr 2018-Nature
TL;DR: Analyses of genetic variation and population structure based on over 3,000 cultivated rice (Oryza sativa) genomes reveal subpopulations that correlate with geographic location and patterns of introgression consistent with multiple rice domestication events.
Abstract: Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.

885 citations


Journal ArticleDOI
TL;DR: A deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls, outperforms existing state-of-the-art tools.
Abstract: Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls The approach, called DeepVariant, outperforms existing state-of-the-art tools The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling

737 citations


Journal ArticleDOI
TL;DR: This manuscript demonstrates performance of the state‐of‐the‐art genome assembly software on six eukaryotic datasets sequenced using different technologies and introduces a concept of upper bound assembly for a given genome and set of reads, and compute theoretical limits on assembly correctness and completeness.
Abstract: Motivation The emergence of high-throughput sequencing technologies revolutionized genomics in early 2000s. The next revolution came with the era of long-read sequencing. These technological advances along with novel computational approaches became the next step towards the automatic pipelines capable to assemble nearly complete mammalian-size genomes. Results In this manuscript, we demonstrate performance of the state-of-the-art genome assembly software on six eukaryotic datasets sequenced using different technologies. To evaluate the results, we developed QUAST-LG-a tool that compares large genomic de novo assemblies against reference sequences and computes relevant quality metrics. Since genomes generally cannot be reconstructed completely due to complex repeat patterns and low coverage regions, we introduce a concept of upper bound assembly for a given genome and set of reads, and compute theoretical limits on assembly correctness and completeness. Using QUAST-LG, we show how close the assemblies are to the theoretical optimum, and how far this optimum is from the finished reference. Availability and implementation http://cab.spbu.ru/software/quast-lg. Supplementary information Supplementary data are available at Bioinformatics online.

562 citations


Journal ArticleDOI
TL;DR: It is demonstrated that even without prior biological knowledge of cross-phenotype relationships, genetics corresponding to clinical measurements successfully recapture those measurements’ relevance to diseases, and thus can contribute to the elucidation of unknown etiology and pathogenesis.
Abstract: Clinical measurements can be viewed as useful intermediate phenotypes to promote understanding of complex human diseases. To acquire comprehensive insights into the underlying genetics, here we conducted a genome-wide association study (GWAS) of 58 quantitative traits in 162,255 Japanese individuals. Overall, we identified 1,407 trait-associated loci (P < 5.0 × 10−8), 679 of which were novel. By incorporating 32 additional GWAS results for complex diseases and traits in Japanese individuals, we further highlighted pleiotropy, genetic correlations, and cell-type specificity across quantitative traits and diseases, which substantially expands the current understanding of the associated genetics and biology. This study identified both shared polygenic effects and cell-type specificity, represented by the genetic links among clinical measurements, complex diseases, and relevant cell types. Our findings demonstrate that even without prior biological knowledge of cross-phenotype relationships, genetics corresponding to clinical measurements successfully recapture those measurements’ relevance to diseases, and thus can contribute to the elucidation of unknown etiology and pathogenesis. A genome-wide association study (GWAS) of 58 traits using data from the Biobank Japan Project identifies 1,407 loci, 679 of which are novel. Comparison with disease GWASs and analysis of genetic correlations and cell-type enrichment show that these clinical measurements are relevant to human disease.

556 citations


Journal ArticleDOI
08 Mar 2018-Cell
TL;DR: How new genomes have changed the structure of the tree of life and altered the understanding of biology, evolution, and metabolic roles in biogeochemical processes is illustrated.

Journal ArticleDOI
TL;DR: This work sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize and validated candidates from two sets of plant-associated genes, including one involved in plant colonization and the other serving in microbe–microbe competition between plant and microbe.
Abstract: Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and the other serving in microbe-microbe competition between plant-associated bacteria. We also identified 64 plant-associated protein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. This work expands the genome-based understanding of plant-microbe interactions and provides potential leads for efficient and sustainable agriculture through microbiome engineering.

Journal ArticleDOI
24 Jan 2018-Nature
TL;DR: The sequencing and assembly of the 32-gigabase-pair axolotl genome is reported using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL).
Abstract: Salamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive molecular toolkit makes the Mexican axolotl (Ambystoma mexicanum) a key representative salamander for molecular investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL). We observed a size expansion of introns and intergenic regions, largely attributable to multiplication of long terminal repeat retroelements. We provide evidence that intron size in developmental genes is under constraint and that species-restricted genes may contribute to limb regeneration. The axolotl genome assembly does not contain the essential developmental gene Pax3. However, mutation of the axolotl Pax3 paralogue Pax7 resulted in an axolotl phenotype that was similar to those seen in Pax3-/- and Pax7-/- mutant mice. The axolotl genome provides a rich biological resource for developmental and evolutionary studies.

Journal ArticleDOI
TL;DR: For affected families, a better understanding of the genetic basis of rare disease translates to more accurate prognosis, management, surveillance and genetic advice; stimulates research into new therapies; and enables provision of better support.
Abstract: The majority of rare diseases affect children, most of whom have an underlying genetic cause for their condition However, making a molecular diagnosis with current technologies and knowledge is often still a challenge Paediatric genomics is an immature but rapidly evolving field that tackles this issue by incorporating next-generation sequencing technologies, especially whole-exome sequencing and whole-genome sequencing, into research and clinical workflows This complex multidisciplinary approach, coupled with the increasing availability of population genetic variation data, has already resulted in an increased discovery rate of causative genes and in improved diagnosis of rare paediatric disease Importantly, for affected families, a better understanding of the genetic basis of rare disease translates to more accurate prognosis, management, surveillance and genetic advice; stimulates research into new therapies; and enables provision of better support

Journal ArticleDOI
TL;DR: A deep learning–based framework that can accurately predict the tissue-specific transcriptional effects of mutations on the basis of DNA sequence alone, ExPecto is developed and can prioritize causal variants from GWAS loci and be used to predict the disease risk of a variant.
Abstract: Key challenges for human genetics, precision medicine and evolutionary biology include deciphering the regulatory code of gene expression and understanding the transcriptional effects of genome variation. However, this is extremely difficult because of the enormous scale of the noncoding mutation space. We developed a deep learning–based framework, ExPecto, that can accurately predict, ab initio from a DNA sequence, the tissue-specific transcriptional effects of mutations, including those that are rare or that have not been observed. We prioritized causal variants within disease- or trait-associated loci from all publicly available genome-wide association studies and experimentally validated predictions for four immune-related diseases. By exploiting the scalability of ExPecto, we characterized the regulatory mutation space for human RNA polymerase II–transcribed genes by in silico saturation mutagenesis and profiled > 140 million promoter-proximal mutations. This enables probing of evolutionary constraints on gene expression and ab initio prediction of mutation disease effects, making ExPecto an end-to-end computational framework for the in silico prediction of expression and disease risk. ExPecto is a deep learning–based framework that can predict the tissue-specific transcriptional effects of mutations on the basis of DNA sequence alone. ExPecto can prioritize causal variants from GWAS loci and be used to predict the disease risk of a variant.

Journal ArticleDOI
TL;DR: The de novo genome assembly of maize line Mo17 and comparative analysis with other sequenced maize lines show extensive gene-order variations, which should have implications for heterosis and genome evolution.
Abstract: Maize is an important crop with a high level of genome diversity and heterosis. The genome sequence of a typical female line, B73, was previously released. Here, we report a de novo genome assembly of a corresponding male representative line, Mo17. More than 96.4% of the 2,183 Mb assembled genome can be accounted for by 362 scaffolds in ten pseudochromosomes with 38,620 annotated protein-coding genes. Comparative analysis revealed large gene-order and gene structural variations: approximately 10% of the annotated genes were mutually nonsyntenic, and more than 20% of the predicted genes had either large-effect mutations or large structural variations, which might cause considerable protein divergence between the two inbred lines. Our study provides a high-quality reference-genome sequence of an important maize germplasm, and the intraspecific gene order and gene structural variations identified should have implications for heterosis and genome evolution. The de novo genome assembly of maize line Mo17 and comparative analysis with other sequenced maize lines show extensive gene-order variations. This study provides insights into maize evolution and has implications for improving maize hybrid lines.

Journal ArticleDOI
24 Apr 2018-BMJ
TL;DR: Genomics England’s ambitious plans to embed genomic medicine into routine patient care are well underway and Clare Turnbull and colleagues discuss its progress.
Abstract: In partnership with NHS England, Genomics England’s ambitious plans to embed genomic medicine into routine patient care are well underway. Clare Turnbull and colleagues discuss its progress

Journal ArticleDOI
05 Apr 2018-Cell
TL;DR: Results from the TCGA PanCancer Atlas project will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing.

Journal ArticleDOI
TL;DR: This article used a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions, and the individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome.
Abstract: While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry.

Journal ArticleDOI
TL;DR: It is demonstrated that even when the purpose is to understand complex structural variation at a single region of the genome, complete genome assembly is becoming the simplest way to achieve this goal.
Abstract: The handheld Oxford Nanopore MinION sequencer generates ultra-long reads with minimal cost and time requirements, which makes sequencing genomes at the bench feasible. Here, we sequence the gold standard Arabidopsis thaliana genome (KBS-Mac-74 accession) on the bench with the MinION sequencer, and assemble the genome using typical consumer computing hardware (4 Cores, 16 Gb RAM) into chromosome arms (62 contigs with an N50 length of 12.3 Mb). We validate the contiguity and quality of the assembly with two independent single-molecule technologies, Bionano optical genome maps and Pacific Biosciences Sequel sequencing. The new A. thaliana KBS-Mac-74 genome enables resolution of a quantitative trait locus that had previously been recalcitrant to a Sanger-based BAC sequencing approach. In summary, we demonstrate that even when the purpose is to understand complex structural variation at a single region of the genome, complete genome assembly is becoming the simplest way to achieve this goal.

Journal ArticleDOI
TL;DR: This review provides an introduction to the FungiDB resources and focuses on available features, tools, and queries and how they can be used to mine data across a diverse range of integrated FungIDB datasets and records.
Abstract: FungiDB (fungidb.org) is a free online resource for data mining and functional genomics analysis for fungal and oomycete species. FungiDB is part of the Eukaryotic Pathogen Genomics Database Resource (EuPathDB, eupathdb.org) platform that integrates genomic, transcriptomic, proteomic, and phenotypic datasets, and other types of data for pathogenic and nonpathogenic, free-living and parasitic organisms. FungiDB is one of the largest EuPathDB databases containing nearly 100 genomes obtained from GenBank, Aspergillus Genome Database (AspGD), The Broad Institute, Joint Genome Institute (JGI), Ensembl, and other sources. FungiDB offers a user-friendly web interface with embedded bioinformatics tools that support custom in silico experiments that leverage FungiDB-integrated data. In addition, a Galaxy-based workspace enables users to generate custom pipelines for large-scale data analysis (e.g., RNA-Seq, variant calling, etc.). This review provides an introduction to the FungiDB resources and focuses on available features, tools, and queries and how they can be used to mine data across a diverse range of integrated FungiDB datasets and records.

Journal ArticleDOI
TL;DR: A near-complete genome of diploid woodland strawberry (Fragaria vesca) is reported using single-molecule real-time sequencing from Pacific Biosciences and how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions is demonstrated.
Abstract: Background Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Findings Here we utilized a robust, cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of ∼7.9 million base pairs (Mb), representing a ∼300-fold improvement of the previous version. The vast majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained ∼24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Conclusions Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions.

Journal ArticleDOI
TL;DR: Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests, and the work suggests that robust results from WGS studies will require large cohorts and strategies that consider the substantial multiple-testing burden.
Abstract: Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.

Journal ArticleDOI
TL;DR: Using the SMR & HEIDI method to integrate GWAS, eQTL and mQTL data, Wu et al. map DNA methylation sites to the transcriptome and thereby prioritize functionally relevant genes for 12 human complex traits.
Abstract: The identification of genes and regulatory elements underlying the associations discovered by GWAS is essential to understanding the aetiology of complex traits (including diseases). Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at GWAS loci for follow-up functional studies. We perform an integrative analysis that uses summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites associated with gene expression and phenotype through shared genetic effects (i.e., pleiotropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes. These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped to distal genes. Further pleiotropic association analyses, which link both the methylome and transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by genetic regulation of transcription through DNAm.

Journal ArticleDOI
TL;DR: It is estimated that implementing parent–offspring whole-exome sequencing as a first-line diagnostic test for developmental disorders would diagnose >50% of patients, and the importance of coupling large-scale research with clinical practice is highlighted.

Journal ArticleDOI
21 Nov 2018-Nature
TL;DR: Genomic, epigenomic and transcriptomic data derived from the Mediterranean amphioxus provide insights into the evolution of the genomic regulatory landscape of chordates, and pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.
Abstract: Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.

Journal ArticleDOI
TL;DR: In this article, a review describes recently developed technical approaches for cancer whole genome sequencing (WGS) and the future direction of cancer WGS, and discusses its utility and limitations as an analysis platform and for mutation interpretation for cancer genomics and cancer precision medicine.
Abstract: Explosive advances in next-generation sequencer (NGS) and computational analyses have enabled exploration of somatic protein-altered mutations in most cancer types, with coding mutation data intensively accumulated. However, there is limited information on somatic mutations in non-coding regions, including introns, regulatory elements and non-coding RNA. Structural variants and pathogen in cancer genomes remain widely unexplored. Whole genome sequencing (WGS) approaches can be used to comprehensively explore all types of genomic alterations in cancer and help us to better understand the whole landscape of driver mutations and mutational signatures in cancer genomes and elucidate the functional or clinical implications of these unexplored genomic regions and mutational signatures. This review describes recently developed technical approaches for cancer WGS and the future direction of cancer WGS, and discusses its utility and limitations as an analysis platform and for mutation interpretation for cancer genomics and cancer precision medicine. Taking into account the diversity of cancer genomes and phenotypes, interpretation of abundant mutation information from WGS, especially non-coding and structure variants, requires the analysis of large-scale WGS data integrated with RNA-Seq, epigenomics, immuno-genomic and clinic-pathological information.

Journal ArticleDOI
TL;DR: Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles, and duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA.
Abstract: The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.

Journal ArticleDOI
TL;DR: It is shown that LMS tumors are characterized by substantial mutational heterogeneity, near-universal inactivation of TP53 and RB1, widespread DNA copy number alterations including chromothripsis, and frequent whole-genome duplication, and recurrent alterations in telomere maintenance genes.
Abstract: Leiomyosarcoma (LMS) is an aggressive mesenchymal malignancy with few therapeutic options. The mechanisms underlying LMS development, including clinically actionable genetic vulnerabilities, are largely unknown. Here we show, using whole-exome and transcriptome sequencing, that LMS tumors are characterized by substantial mutational heterogeneity, near-universal inactivation of TP53 and RB1, widespread DNA copy number alterations including chromothripsis, and frequent whole-genome duplication. Furthermore, we detect alternative telomere lengthening in 78% of cases and identify recurrent alterations in telomere maintenance genes such as ATRX, RBL2, and SP100, providing insight into the genetic basis of this mechanism. Finally, most tumors display hallmarks of "BRCAness", including alterations in homologous recombination DNA repair genes, multiple structural rearrangements, and enrichment of specific mutational signatures, and cultured LMS cells are sensitive towards olaparib and cisplatin. This comprehensive study of LMS genomics has uncovered key biological features that may inform future experimental research and enable the design of novel therapies.

Journal ArticleDOI
TL;DR: Combining genetic and genomic approaches, potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals are identified, and a rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose.
Abstract: Rose is the world’s most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line (‘HapOB’) from Rosa chinensis ‘Old Blush’ and generated a rose genome assembly anchored to seven pseudo-chromosomes (512 Mb with N50 of 3.4 Mb and 564 contigs). The length of 512 Mb represents 90.1–96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.