scispace - formally typeset
C

Christiaan Leeuwenburgh

Researcher at University of Florida

Publications -  340
Citations -  39416

Christiaan Leeuwenburgh is an academic researcher from University of Florida. The author has contributed to research in topics: Skeletal muscle & Oxidative stress. The author has an hindex of 87, co-authored 311 publications receiving 34620 citations. Previous affiliations of Christiaan Leeuwenburgh include University of Florida Health Science Center & University of California, San Francisco.

Papers
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Mitochondrial DNA Mutations, Oxidative Stress, and Apoptosis in Mammalian Aging

TL;DR: It is shown that mice expressing a proofreading-deficient version of the mitochondrial DNA polymerase g (POLG) accumulate mt DNA mutations and display features of accelerated aging, suggesting that accumulation of mtDNA mutations that promote apoptosis may be a central mechanism driving mammalian aging.
Journal ArticleDOI

Sirt3 Mediates Reduction of Oxidative Damage and Prevention of Age-Related Hearing Loss under Caloric Restriction

TL;DR: These findings suggest that Sirt3-dependent mitochondrial adaptations may be a central mechanism of aging retardation in mammals and suggest that CR reduces oxidative DNA damage in multiple tissues and prevents AHL in wild-type mice but fails to modify these phenotypes in mice lacking the mitochondrial deacetylase Sirt 3.
Journal ArticleDOI

Molecular inflammation: underpinnings of aging and age-related diseases.

TL;DR: The purpose of this review is to describe the molecular roles of age-related physiological functional declines and the accompanying chronic diseases associated with aging to provide insights into potential interventions that may affect the aging process and reduce age- related diseases, thereby promoting healthy longevity.