scispace - formally typeset
Search or ask a question
Institution

Freescale Semiconductor

About: Freescale Semiconductor is a based out in . It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 7673 authors who have published 10781 publications receiving 149123 citations. The organization is also known as: Freescale Semiconductor, Inc..


Papers
More filters
Patent
22 Feb 2007
TL;DR: In this paper, a Controller Area Network (CAN) node consists of a high-powered microcontroller (10), a low standby power regulator (112), a CAN bus transceiver (106), and a minimal CAN message buffer for storing received messages.
Abstract: A Controller Area Network (CAN) node consists of a high-powered microcontroller (10), a low standby power regulator (112), a CAN bus transceiver (106), and a minimal CAN message buffer for storing received messages. Low power standby operation allows for the controller to power off, while the transceiver and regulator are operated in standby. The transceiver/regulator will enter run mode after the first symbol of a received CAN message is validated off the bus. As the original CAN message is received, it is buffered in the message buffer and, after stored, a status register is set to indicate the full message has been received. Once the controller has stabilized out of a wake-up mode, it retrieves the stored message and acts accordingly. The CAN message buffer is coupled to the controller by an system packet interface (SPI) interface (122) for transmission of a controller wake-up command and retrieval of a buffered message.

50 citations

Patent
26 Nov 2014
TL;DR: In this article, a resistive non-volatile memory cell is programmed and a programming voltage is applied to the first terminal of the resistive NVM cell, and the current through the NVM is limited to a second magnitude greater than the first magnitude.
Abstract: A resistive non-volatile memory cell is programmed. A programming voltage is applied to a first terminal of the resistive non-volatile memory cell. Sensing, during the applying the programming voltage, determines if the resistive non-volatile memory cell has been programmed. Current is limited through the resistive non-volatile memory cell to a first magnitude. After a predetermined time, if the sensing has not detected that the resistive non-volatile memory cell has been programmed, the current through the resistive non-volatile memory cell is limited to a second magnitude greater than the first magnitude. The resistive non-volatile memory cell is also erased.

50 citations

Patent
02 Apr 1997
TL;DR: In this paper, a monolithic integrated circuit die (10) is fabricated to include unilateral FETs (113, 114, 115), RF passive devices such as a double polysilicon capacitor (57), poly-silicon resistor (58), and inductor (155), and an ESD protection device (160).
Abstract: A monolithic integrated circuit die (10) is fabricated to include unilateral FETs (113, 114, 115), RF passive devices such as a double polysilicon capacitor (57), a polysilicon resistor (58), and an inductor (155), and an ESD protection device (160). A first P+ sinker (28) provides signal isolation between two FETs (113, 115) separated by the first sinker (28) and is coupled to a source region (86) of a power FET (115) via a self-aligned titanium silicide structure (96). A second P+ sinker (29) is coupled to a bottom plate (44) of the double polysilicon capacitor (57). A third P+ sinker (178) is coupled to a source region (168) of the ESD protection device (160) via another titanium silicide structure (174).

49 citations

Patent
27 Aug 2001
TL;DR: A magneto-electronic component includes an electrically conductive layer for generating a magnetic field, a ferromagnetic cladding layer adjacent to the electrically-conductive layer, and an antiferromagnetic layer in this article.
Abstract: A magneto-electronic component includes an electrically conductive layer for generating a magnetic field, a ferromagnetic cladding layer adjacent to the electrically conductive layer, and an antiferromagnetic layer adjacent to the ferromagnetic cladding layer.

49 citations

Patent
27 Sep 2007
TL;DR: In this article, a method of packaging a first device having a first major surface and a second major surface is presented, where the first layer is selected from the group consisting of an encapsulant and a polymer.
Abstract: A method of packaging a first device having a first major surface and a second major surface includes forming a first layer over a second major surface of the first device and around sides of the first device and leaving the first major surface of the first device exposed, wherein the first layer is selected from the group consisting of an encapsulant and a polymer; forming a first dielectric layer over the first major surface of the first device, forming a via in the first dielectric layer, forming a seed layer within the via and over a portion of the first dielectric layer, physically coupling a connector to the seed layer, and plating a conductive material over the seed layer to form a first interconnect in the first via and over a portion of the first dielectric layer.

49 citations


Authors

Showing all 7673 results

NameH-indexPapersCitations
David Blaauw8775029855
Krishnendu Chakrabarty7999627583
Rajesh Gupta7893624158
Philippe Renaud7777326868
Min Zhao7154724549
Gary L. Miller6330613010
Paul S. Ho6047513444
Ravi Subrahmanyan5935314244
Jing Shi5322210098
A. Alec Talin5231112981
Chi Hou Chan485119504
Lin Shao4838012737
Johan Åkerman483069814
Philip J. Tobin471866502
Alexander A. Demkov473317926
Network Information
Related Institutions (5)
STMicroelectronics
29.5K papers, 300.7K citations

92% related

Texas Instruments
39.2K papers, 751.8K citations

89% related

Intel
68.8K papers, 1.6M citations

87% related

Motorola
38.2K papers, 968.7K citations

86% related

Samsung
163.6K papers, 2M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20203
201910
201826
201779
2016267