scispace - formally typeset
Search or ask a question
Institution

Freescale Semiconductor

About: Freescale Semiconductor is a based out in . It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 7673 authors who have published 10781 publications receiving 149123 citations. The organization is also known as: Freescale Semiconductor, Inc..


Papers
More filters
Patent
23 Feb 1998
TL;DR: In this paper, a method of fabricating 3D semiconductor circuits including providing a conductive layer with doped polysilicon thereon patterned and annealed to form first single grain poly-silicon terminals of semiconductor devices is described.
Abstract: A method of fabricating 3D semiconductor circuits including providing a conductive layer with doped polysilicon thereon patterned and annealed to form first single grain polysilicon terminals of semiconductor devices. Insulated gate contacts are spaced vertically from the terminals so as to define vertical vias and polysilicon is deposited in the vias to form conduction channels. An upper portion of the polysilicon in the vias is doped to form second terminals for the semiconductor devices, and the polysilicon is annealed to convert it to single grain polysilicon. A second electrically conductive layer is deposited and patterned on the second terminal to define second terminal contacts of the semiconductor devices.

108 citations

Patent
16 Jun 2005
TL;DR: In this paper, an analog front end and a digital back end are used to decode the incoming data and establish a sampling clock for the pulse/level detector, and an automatic gain control circuit adjusts a receiver gain according to the received signal strength and controls tuning of magnetic coupling circuitry.
Abstract: A transceiver for a RFID reader and a transceiver for a RFID transponder (tag) allow communication between the two devices. The RFID reader utilizes an analog front end and a digital backend. In the receiver portion of the transceiver, the front end of the RFID reader uses a pair of down-conversion mixers to demodulate a received signal into in-phase (I) and quadrature (Q) components and analog-to-digital converters (ADC) digitize the signal. A digital signal processor (DSP) in the back end processes the digital signal and uses a matched filter for data detection. The RFID tag receives an inductively coupled signal from the reader and the receiver portion of the tag uses a pulse/level detector that employs an analog comparator and a sample and hold circuit to detect the received signal. A digital decoder/controller is used to decode the incoming data and to establish a sampling clock for the pulse/level detector. An automatic gain control (AGC) circuit adjusts a receiver gain according to the received signal strength and controls tuning of magnetic coupling circuitry.

107 citations

Patent
18 Jan 1996
TL;DR: A light emitting diode display package and method of fabricating a light-emitting diode (LED) display package including a LED array display chip, fabricated of an array of LEDs, formed on a substrate, having connection pads positioned about the perimeter of the display chip and a separate silicon driver chip having connection pad routed to an uppermost surface, positioned to cooperatively engage those of display chip when properly registered and interconnected using wafer level processing technology.
Abstract: A light emitting diode display package and method of fabricating a light emitting diode (LED) display package including a LED array display chip, fabricated of an array of LEDs, formed on a substrate, having connection pads positioned about the perimeter of the LED array display chip, a separate silicon driver chip having connection pads routed to an uppermost surface, positioned to cooperatively engage those of the display chip when properly registered and interconnected using wafer level processing technology. The display chip being flip chip mounted to the driver chip and having a layer of interchip bonding dielectric positioned between the space defined by the display chip and the driver chip. The LED display and driver chip package subsequently having selectively removed the substrate onto which the LED array was initially formed, thereby exposing the connection pads of the display chip and a remaining indium-gallium-aluminum-phosphide (InGaAlP) epilayer. The light emitted from the LED display chip, being emitted through the remaining indium-gallium-aluminum-phosphide (InGaAlP) epilayer of the display chip.

107 citations

Patent
20 Oct 2004
TL;DR: In this paper, a universal memory process is realized using both volatile and nonvolatile memory cells using the same process to create the universal memory processes, where charge storage layers, such as nanoclusters (143, 144), are adjacent to the transistor channel.
Abstract: A transistor (10) is formed having three separately controllable gates (44, 42, 18). The three gate regions may be electrically biased differently and the gate regions may have different conductivity properties. The dielectrics on the channel sidewall may be different than the dielectrics on the top of the channel. Electrical contacts to source, drain and the three gates is selectively made. By including charge storage layers, such as nanoclusters (143, 144), adjacent the transistor channel and controlling the charge storage layers via the three gate regions, both volatile and non-volatile memory cells are realized using the same process to create a universal memory process. When implemented as a volatile cell, the height of the transistor and the characteristics of channel sidewall dielectrics control the memory retention characteristics. When implemented as a nonvolatile cell, the width of the transistor and the characteristics of the overlying channel dielectrics control the memory retention characteristics.

107 citations

Patent
07 Oct 2011
TL;DR: In this article, the first and second semiconductor devices are stacked in such a way that the first major surface of the first semiconductor device faces the second major surface on the other side of the contact pad.
Abstract: A stacked semiconductor device includes a first and second semiconductor device having a first major surface and a second major surface opposite the first major surface, the first major surface of the first and second semiconductor devices include active circuitry. The first and second semiconductor devices are stacked so that the first major surface of the first semiconductor device faces the first major surface of the second semiconductor device. At least one continuous conductive via extends from the second major surface of the first semiconductor device to the first major surface of the second semiconductor device. Conductive material fills a cavity adjacent to the contact pad and is in contact with one side of the contact pad. Another side of the contact pad of the first semiconductor device faces and is in contact with another side of the contact pad of the second semiconductor device.

106 citations


Authors

Showing all 7673 results

NameH-indexPapersCitations
David Blaauw8775029855
Krishnendu Chakrabarty7999627583
Rajesh Gupta7893624158
Philippe Renaud7777326868
Min Zhao7154724549
Gary L. Miller6330613010
Paul S. Ho6047513444
Ravi Subrahmanyan5935314244
Jing Shi5322210098
A. Alec Talin5231112981
Chi Hou Chan485119504
Lin Shao4838012737
Johan Åkerman483069814
Philip J. Tobin471866502
Alexander A. Demkov473317926
Network Information
Related Institutions (5)
STMicroelectronics
29.5K papers, 300.7K citations

92% related

Texas Instruments
39.2K papers, 751.8K citations

89% related

Intel
68.8K papers, 1.6M citations

87% related

Motorola
38.2K papers, 968.7K citations

86% related

Samsung
163.6K papers, 2M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20203
201910
201826
201779
2016267