scispace - formally typeset
Open AccessJournal ArticleDOI

The machinery of macroautophagy

Yuchen Feng, +3 more
- 01 Jan 2014 - 
- Vol. 24, Iss: 1, pp 24-41
TLDR
This review focuses on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information.
Abstract
Autophagy is a primarily degradative pathway that takes place in all eukaryotic cells. It is used for recycling cytoplasm to generate macromolecular building blocks and energy under stress conditions, to remove superfluous and damaged organelles to adapt to changing nutrient conditions and to maintain cellular homeostasis. In addition, autophagy plays a critical role in cytoprotection by preventing the accumulation of toxic proteins and through its action in various aspects of immunity including the elimination of invasive microbes and its participation in antigen presentation. The most prevalent form of autophagy is macroautophagy, and during this process, the cell forms a double-membrane sequestering compartment termed the phagophore, which matures into an autophagosome. Following delivery to the vacuole or lysosome, the cargo is degraded and the resulting macromolecules are released back into the cytosol for reuse. The past two decades have resulted in a tremendous increase with regard to the molecular studies of autophagy being carried out in yeast and other eukaryotes. Part of the surge in interest in this topic is due to the connection of autophagy with a wide range of human pathophysiologies including cancer, myopathies, diabetes and neurodegenerative disease. However, there are still many aspects of autophagy that remain unclear, including the process of phagophore formation, the regulatory mechanisms that control its induction and the function of most of the autophagy-related proteins. In this review, we focus on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Roles of mitophagy in cellular physiology and development

TL;DR: The current literature on these topics is reviewed and specific examples from yeast and mammalian systems are provided, with a focus on proteomic methods dedicated to the study of mitophagy in different systems.
Journal ArticleDOI

Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy.

TL;DR: In this paper, the authors discuss the crosstalk between oncogenic signaling pathways and autophagy followed by possible strategies for cancer treatment via regulation of autophathy.
Journal ArticleDOI

Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation

TL;DR: It is found that VitD3 significantly recovered oxidized low-density lipoprotein-impaired autophagy, as well as increased Autophagy-mediated lipid breakdown in mouse bone marrow-derived macrophages and human monocyte-derived Macrophages, thus inhibiting the conversion of macrophage foam cells into foam cells.
Journal ArticleDOI

Autophagy induced by ionizing radiation promotes cell death over survival in human colorectal cancer cells.

TL;DR: Results highlight that inhibition of autophagic pathways does not generally increase therapy success but may also lead to an unfavorable outcome especially under amino acid and oxygen restriction.
Book ChapterDOI

The Lysosome and Intracellular Signalling

TL;DR: The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB).
References
More filters
Journal ArticleDOI

AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1

TL;DR: A molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1, is demonstrated and a signalling mechanism for UlK1 regulation and autophagic induction in response to nutrient signalling is revealed.
Journal ArticleDOI

Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism

TL;DR: Mutations in the newly identified gene appear to be responsible for the pathogenesis of Autosomal recessive juvenile parkinsonism, and the protein product is named ‘Parkin’.
Journal ArticleDOI

Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue

TL;DR: The results are shown to favour the ferryl ion structure, or an isomer of this structure, for the higher oxidation state, and theHigher oxidation state may provisionally be named ferrylmyoglobin.
Journal ArticleDOI

Autophagy: process and function

TL;DR: In this review, the process of autophagy is summarized, and the role of autophileagy is discussed in a process-based manner.
Related Papers (5)

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 -